Crimson

version 2.1 beta

Installation and User Guide

By Stephen Fisher, Susan Davidson, and Junhyong Kim.
Biology and Computer Science Departments, University of Pennsylvania.

Crimson 1

Table of Contents:

TaADLE OF CONENLS:eetieiie ittt ettt et e et e et e e et e e s abe et e esaeeenbeessbeenbeesaseenbeasnseenseenaseans 1
OV BT VIEW .ttt ettt et ettt et e et e bt e et e e aeeeab e e st e eabe e seeeabeeeateeabe e abeeabeeeabeeaseeesbeenseesnbeenbeesnbeenseesateans 2
QUICK STATT: ..eiitieiitieeeiee ettt ettt e ettt e et e e e bt e e e teeeebaeeasaaeeasseeaasseeassaeanssaeanssaeansseeensseeansaeessseeesnseeennses 3
Installing and RUNNING CrIMSON:ooutiiuiiiiriiniieie ittt ettt ettt ettt et sbe et sbe b enesaeenee 4
INSTALLALION L...eiiiii ettt ettt e st e bt e et e e bt e e ab e e bt e eab e e bt e enbeenbeeenbeenbeeenee 4
LITIUK ottt ettt ettt et ettt e h e et e e bt e eab e e bt e e ab e e bt e enbeenbeeenbeenteeenteenneeenee 4
WiINdows (2000 OF 1ALET) ...euviiiiiiieeiieeeiie ettt et ete e et e et e et eeeaseeesaeeesaeesnseeenareeas 4
Macintosh OS X (10.4 OF 1aeT).....ccuuiiiiiiiieiieee ettt 4
Command LiNe ATZUIMENTS.c..cotiriiriiriiiieeterie ettt ettt sttt et sttt ettt sbe et sbeenbeetesaeenbeennes 5
WINAOWS USAZE ..ottt ettt ettt et et e et e b e st e et e e eabeebeeenbeenseesnbeenseesnseenseennne 5
Linux / MacintOSh USAZEccuuiiiiiiiiieiieeiie ettt ettt et sttt et e e 5
BatCh IMOAE ...ttt ettt et et e et e e st e e bt e et e e bt e et e e beeenbeeneeenee 5
WAITUS 3D VIBWET ...ttt ettt et ettt et et e et e bt e et e e bt e sabe e bt e enbeebeesneeenseesnteenseaanns 6
WINAOWS USAZE ...ttt ettt ettt et et e et et e et e e beeeabeebeeenbeenseesnbeenseesnseenneeenne 6
Linux / MacintOSh USAZEcccuvieiiiiiiieiieiie ettt ettt sttt s 6
MISCEIIANEOUS INOTES ...ttt ettt ettt ettt e bt et e et e e aeeeab e e bt e sabeeteeeaseebeesnbeenseesnseenseennns 6
Command Line INTETTACE:ccuiiiiiiieeiiee ettt ettt et e et esebeebeesateens 7
Graphical User INEITaCE:cc.eiiiiiiiiiiiiiiec ettt ettt st 8
IMEETIU OPLIONIS: .evtiieeitetieieeite ettt ettt ettt ettt b ettt sh et e a e s bt e st e eat e sbe et e e st e sbe e bt easesbeenbeeanenbeensesanens 9
USAZE EXAMPIES ...ttt ettt ettt ettt a ettt s bt bt et sbe bbb b eanes 10
QUETY OPLIOMIS: .ttt ettt ettt b ettt e e bt bt e et s b e et eatesbe et e eatesbe et e eatesbeenbeeaeenbeentesaeens 21
Leaf Selection Methods:ooouii it ettt ettt et e et eenaeeneeas 21
Sequence Selection MethOds:co.eiiiiiiiiiiiiieee ettt st 21
SCTIPHNG LANZUAZE: ...c..eeueiiiiiieieeteett ettt ettt sttt et et b e et ebe e st e et sae e bt et e sbeenbeentenaeens 23
5 [T 1<) 1) OO RS TRRORPSRT 23
ST TP DY ettt ettt ettt ettt et et et st et et e ettt et s a e et e e s et e a e e et en e st e eneenane 23
SCREIMA: ...ttt ettt ettt e et e e a e et e et e e en b e e bt e e ab e e bt e enbeebeeenbeeteenateen 27
NEXUS File FOIMALooiiiiiiieiieee ettt ettt ettt ettt e st e e bt e st e e bt e snseenseesneeenseeenne 28
WAITUS 3D VIBWET ...ttt ettt ettt et ettt e et e bt e s at e e bt e ssaeeabeesateenbeesnseenbeesneeenseennne 31
Loading Very Large Data Partitions:cccueeiuieiiiiiieieeiiese ettt ettt ettt s ebee e 34
(@ To] (OO PP RRUURURURURRRUPPURO 34
MY SO ettt et ettt e b e et h e et ae e et he e ettt e e n e e aneeneen 35
SyStemM REQUITEIMENTS:couiiiiiiiiiiiitiiie ettt sttt et e be et e e sbt e bt et sbeenbeentesanens 36
KIOWI ISSUES: ...ttt et ettt et e st e e e s it e e e bt e e s bt e e ebbeesabbeesabeeesabeeanas 37
LIS ettt ettt ettt et h e et e et e e et e e h e e ea bt e eh b e et e e eht e e beeente e bt e eateenbeeenteebeeenbeenbeennne 38

CONLACT ITOTINIALION: et ee et e aaeeeeee e e e aaaaeeeeeeeaenaaaaaeeeeeeeaaenaanaens 42

Crimson 2

Overview:

Crimson facilitates the extraction of sub-trees from very large phylogenetic trees. Trees are
loaded into a shared database and sampled according to schemes controlled by the user.
Comprehensive graphical dialogs allow users to easily manage and query trees in the database.
Queries can be stored in the database to be shared with other users and moved between
databases. A command line interface enables users to write their own functions and scripts to
manage the database, manipulate the trees and queries, and automate any of the built-in
functions.

The application allows users to connect to Oracle or MySQL databases. Once connected to a
database, the program will register the trees that are contained in the database as well as any
stored queries and data models. If no tables exist in the database, the application will
automatically create the necessary tables. The user can then use the graphical tree manager to
load new trees, add or remove data partitions, delete existing trees, add notes, etc. In order to
facilitate the management of trees and data partitions, Crimson stores information about the data
models used and can link data models to trees and data partitions. A graphical query manager
allows users to manipulate existing queries and add new queries. When users create queries they
have the option of publishing the queries to the database so that they are available in future
sessions and to other users. It is also possible to export queries to text files so that they can be
shared between databases. Users are provided with graphical means to run existing queries and
to easily set the parameters associated with the running of queries. For example, a user can
specify that a query run multiple times to repeatedly sample from a tree using the same query
specifications. This might be useful to users who want to take repeated random samples from a
tree. The application also provides simple methods to extract a tree structure, an entire tree
(containing all data partitions), or a specific data partition from the database. In order to
facilitate the viewing of trees, Crimson contains routines to easily display exported trees in the
3D tree viewer Walrus (see Walrus 3D Viewer, page 31).

This application has been tested on Windows (2000 and XP), Mac OS (10.5), and Linux (RHEL
5) systems and should run on any system that contains Java 1.5 or later. Both Oracle and
MySQL databases can be used, and future versions will allow for connecting to other databases
such as IBM DB2 and Microsoft SQL.

Extensive Java API documentation can be found in the “documentation” subfolder.

Crimson 3

Quick Start:

This is not meant to be exhaustive but rather to give you a few pointers to get you started, if you
don’t wish to read the more extensive documentation below.

* To run Crimson, launch “crimson.sh” on a Mac or Linux system. Use “crimson.bat” on a
Windows system.

* When run, Crimson will open a graphical window and a command line interface. You can
use either interface interchangeably. Note that all output will be displayed in the
Messages window in the GUI.

* To connect to the SDSC Oracle database run the command “connectCIPRES()” from the
Crimson command line. It will take about 30 seconds to complete the connection and
load the tree and query information from the database.

* To create and run a query, select “New...” from the Query menu in the GUI or type
“newQuery(“<tree ID>") at the command line. Note that you must be connected to a
database. Assuming you are connected to the CIPRES database, which contains a tree
called “TREE-0" then you can use the command ‘newQuery(“TREE-0")’.

* See the example files (“exBatchScript*.py”) for use cases that can be run via the
command line. While these files can be used when running Crimson without the
command line (similar to the “-n” option in Paup), the commands in these files can also
be entered directly into the command line.

* Review the file “startup.py” to see a list of commands and for more scripting examples.
You can also enter “help()” at the command line for a list of Crimson commands. To get
more documentation on a specific command use “help(<command>)” such as
“help(queryManager)”.

* Open “index.html” in the documentation directory to view Crimson’s Java API. The API
is accessible via the command line. Again, view the startup.py file for examples of
accessing the Java API via the command line.

Note that Crimson needs to build an internal representation of the tree structure, the first time a
tree is queried. For a million leaf tree this can take up to a minute. This only happens once per
tree per session. So if you repeatedly query a tree, the tree will not be rebuilt. However, if you
quit Crimson and start again, then the tree will be rebuilt the first time it is used in the new
Crimson session.

Crimson 4

Installing and Running Crimson:

In order to run Crimson, it is necessary to first install java version 1.5 or later. If not already
installed, java can be downloaded from the Sun java website.
http://www.java.com/en/download/manual.jsp

Installation:

Linux

Setup:

1. Untar the package in the desired directory.
$ tar xvfj crimson.tar.bz2

2. Change to the crimson directory.
$ cd crimson

3. Adjust the attributes for the application executable.
$ chmod a+x crimson.sh

Running:
1. Change directories into the “crimson” directory and run "./crimson.sh".

Windows (2000 or later)

Setup:
1. Unzip the package in the desired directory (WinZip or some other pkzip based application
will suffice).

Running:
1. From within the “crimson” folder double-click the "crimson.bat" application.

Macintosh OS X (10.4 or later)

Setup from *.dmg version:
1. Open the disk image by double clicking on it from the Finder.
2. Copy the Crimson folder to somewhere on your local drive.

Running:
1. Open /Applications/Utilities/Terminal
2. Change directories into the “Crimson” directory and run "./crimson.sh".

Setup from *.tar.bz2 version:
1. Open /Applications/Utilities/Terminal
2. Using the terminal, follow the Linux instructions

Running:
1. Change directories into the “crimson” directory and run "./crimson.sh".

Crimson 5

Command Line Arguments

The Crimson executable contains various optional arguments.

-dos: Sets ‘ISDOS’ flag to true. Used to establish command interface for launching
shell commands. This flag is automatically set by ‘crimson.bat’.

-batch: Sets ‘ISBATCH’ flag to true. Inhibits the loading of the interactive interface.
This will also disable X11.

-nox: Sets ‘NOX flag to true. When true, will restrict the loading of various GUI
interfaces. This is necessary on some systems that do not contain any
graphical display server (ex X11 on Linux systems).

Windows usage
> crimson.bat [-batch filename | -nox [filename] | filename]

Linux / Macintosh usage
$ crimson.sh [-batch filename | -nox [filename] | filename]

Batch Mode

Both crimson.sh (Linux/Mac) and crimson.bat (Windows) allow for the inclusion of one
command line argument which is a Crimson python file that will be run. The command line
argument (ie python file) is loaded into the CLI at startup using the ‘loadPython()’ script. When
the ‘-batch’ argument is present, Crimson will automatically quit after running the remaining
batch file; that is, it will not launch the interactive interface.

For example the following command will run the script ‘exBatchScript.py’ in batch mode on a
Linux machine, quitting Crimson upon completion of the script.
crimson.sh —batch exBatchScript.py

Crimson allows users to store queries in the database. There are a number of queries stored in
the SDSC Oracle server.

Four example batch files are included with the installation package.
exBatchScript.py - This script will log into the SDSC Oracle server, create a query that
will randomly sample 1000 leaves from the tree ‘TREE-0’. The query will run
three times and save the resulting trees to the NEXUS files called
sampTree1000 0, sampTree1000 1, and sampTreel000 2. To run this batch file
on a Windows machine:

exBatchScript-2.py — This script will run the query "L10.P03.R05" from the SDSC
database, creating a 10 leaf sub-tree, and saving the output as a phylip file. The
phylip file is used by RAXML to reconstruct the sub-tree.

Crimson 6

exBatchScript-3.py - This script will run the query "L10.P03.R05" from the SDSC
database, creating a 10 leaf sub-tree, and saving the output as a NEXUS file. The
NEXUS file will contain a Paup block instructing paup to use neighbor joining to
reconstruct the tree. The query is then run a second time, including the same
leaves and containing a Paup block using parsimony for the reconstruction. The
true sub-tree topology will not be included in the NEXUS files but will be output
separately as a newick string, for comparison to the reconstructed trees.

exBatchScript-4.py - This script will generate NEXUS, phylip, and newick files for 40
of the 10 leaf queries stored in the SDSC database.

Walrus 3D Viewer

Crimson contains hooks for accessing Walrus from the built-in menu and tree manager. These
features are enabled when Crimson is launched with the “crimson-walrus” script.

The Walrus 3D Viewer requires the Java 3D library to run. Users can also download the Java
3D installation files from:
http://java.sun.com/products/java-media/3D/

Windows usage
> crimson-walrus.bat [filename]

Linux / Macintosh usage
$ crimson-walrus.sh [filename |

Miscellaneous Notes

When processing large trees, Java must be run with 512 or 1024 MB of memory. This is set to
1024 by default in crimson.bat and crimson.sh. To change this value, adjust the argument:
-Xmx1024m

When using MySQL, it is recommended that servers be run in "strict" mode:
--sql-mode='STRICT _ALL TABLES'
Users also need to set the ‘max_allowed packet’ for MySQL server and client
to allow for loading of large trees:
-max_allowed packet=64M

Crimson 7

Command Line Interface:

The Command Line Interface (CLI) is based on the python scripting language and will accept
most valid Python commands. The CLI can be used to load, modify, view, and save data. The
CLI also provides access to the internal data structures containing the tree, partition, model, and
query data. Thus, using Python commands, users can create their own scripts to automate tasks
and expand upon built-in data operations. The use of scripts and user-defined data operations are
discussed further in the section Scripting Language (page 23).

When the program starts it automatically loads the file called ‘startup.py’, containing various
scripts to facilitate the use of common built-in functions. The user can modify this file to include
their own scripts or to load addition files at startup.

<+ C:\WINDOWS\system32\cmd.exe ‘JE”&
=

C:\Documents and Settings\Gromit\Desktop\working\lab\crimson\gui>ECHO OFF I
CRIMSON v2.0 beta

By Stephen Fisher, Susan Davidson, and Junhyong Kim.
Copyright 2006, University of Pennsylvania. All rights reserved.

Loading startup scripts...
Using mysql database.
Database opened.

>>>

Crimson §

Graphical User Interface:

The Graphical User Interface (GUI) can be used to perform many of the built-in operations. The
GUI has a main window which contains various menus, a “Messages” window and a “History”
window. The ‘Messages’ window will display all status, warning, and error messages. The user
can disable this window via the Edit menu, in which case all output will be displayed in the CLI.
The verbosity of the feedback (status, warning, and error) can be set with the “setVerbose()”
command.

The ‘History’ window contains the CLI equivalent for all commands initiated via the GUI.
Thus, the History window will contain a log of all GUI derived commands. The user can copy
and paste the commands in the History window directly into the CLI or into a file to be loaded
into the CLI. Future versions of the GUI will include the ability to directly load or save
command histories, and convert sequences of commands from the history into macros accessible
through the CLI.

£ CRIMSON
File Edit Tree Model Query Help
Messages:
~
v
4 %
?—li;tory:
~
v
< >

Menu Options:

Crimson 9

File:

Edit:

Tree:

- Set Database Type
- Open Database...
- Close Database

- Test Database Connection

- Quit

- Copy History

- Clear History

- Select All History

- Enable Message Window
- Clear Messages

- Load...

- Append...

- Export Tree...

- Stats Tree...

- View Tree...

- 3D View Tree...

- Refresh Tree List
- Manage

- Delete

Model:
- New...
- Refresh Model List
- View
- Manage

- Delete

Query:
- New...
- Load From DB
- Load All From DB
- Publish To DB...
- Import...
- Export...
- View
- Manage

- Delete

Help:
- Script Commands
- API documentation

- About

Crimson 10

Usage Examples:

The application directory contains multiple example batch files (see “exBatchScript.py”). These
files provide further usage examples and scripting hints.

1. Open database. When Crimson is first started an 'Open Database' dialog is presented. The
application will remember the username, server, port, and database values across sessions.
However, the password is only stored for the duration of the session. Users can use the File
Menu to close an existing database and open another database at any time. When a database is
opened, Crimson tests for the existence of various application specific tables (“TREES,”
“PARTITIONS,” “PART _DATA,” “MODELS,” and “QUERIES”) and if they don’t already
exist, it will create them. See the section Schema (page 27) for more information about the
actual tables created and used by Crimson.

£ Open Database

Username crimson

Password: khkArr A AA A

MYSQL Server | localhost

Port 0

Database crimson

Ok] [Cancel

Crimson 11

2. Test database connection. Test the connection to the database by selecting the 'File -> Test
Database Connection' menu item. If the test is successful, then a message similar to the
following will be printed in the message window.

The database date is 2005-04-01 15:30:00.0
Database connection test succeeded.

£ CRIMSON
=I=N Edit Tree Model OQuery

Alt+S

§‘ Set Database Type

~
@ Open Database... Alt+0O =
= 5-08-10
% Close Database Alt+C
: succeeded.
z Test Database Connection
@© ouit
v
<5 ¥
History:
openDatabase ("crimson", "******" "localhost", 0, "crimson") M|
estConnection ()
v
\ >

‘ ~

Progress: |

Crimson 12

3. Load tree. Choose the "Tree -> Load...' menu item to load a tree. A file selection dialog will
be presented. Choose the 'F81x100' file from the data directory.

i Select NEXUS File @

Look in: [data v 2 2EE

@ &S F81x100
A = FB1x1000
My Recent g F31,100_data

Documents g £a1,100_struct

@ i FB1%2000

Desktop

My
Documents

My
Com_puter

‘8 File name: | F81x100 ’ Open |

My Network i
Places Files oftype: Al Files v| | cancel |

You will now be presented with a dialog to name the tree and partition. Changes the tree name
to 'F81test' and the partition name to 'test pl'. Note that every partition must have a unique
name.

Tree name: | F81test ‘

Partition name: | test_p1| }

Ok l [Cancel]

If loaded successfully you should see the following in the Messages window.

Building tree.

Updated TREES table.

Updated PARTITIONS table.
Finished loading CHARACTERS data.
Finished loading CRIMSON data.

Crimson 13

4. Append partition. Choose 'Tree -> Append...' to append a partition to the tree. A Tree
Selector dialog will open and from this dialog, choose the tree to append, 'F8ITEST' in this
example. Next you will be presented with a NEXUS file choose. Select the file 'F81x100_data'
from the data directory. After choosing the file, you will again be presented with a dialog to
specify the name of the partition. Change the name to "TEST P2'. Note that every partition must

have a unique name.
£ Tree Selector @

Select ltem:
FB1TEST

[Select] [Cancel]

Crimson 14

5. Manage tree. Open the Tree Manager dialog to view information about the tree (select the
"Tree -> Manage' menu item). From this dialog you can see that the tree 'F81TEST" has 2
partitions, 100 leaves, and that it’s a binary tree that is not ultrametric. In the partitions panel,
each partition is listed with its sequence length and model association. From this dialog, trees
and partitions can be loaded or deleted. You can view and edit the notes associated with each
tree or partition. You can also change the model associated with each partition.

\2 w B Statistics Newick @ @ @ " Q @

Tree ID Partitions Num Leaves Binary Ultrametric Partitions (length, model):
TINY 1 5 yes yes TEST_P2 {1000 bp)
F81X100 1 100 yes no TEST_P1 (1000 bp)
BD6000 0 5895 no no
COMB_100K 0 100002 yes no
YAR_1M 0 1000000 yes yes
PAUP_SO 0 100000 no yes
NTEST 1 100 yes no
TINY-4BC 3 S yes yes
TINY2 1 S yes yes
BDS000_NEX 1 5000 no es
[FE1TEST B | 100 | ves | no

B v 0

6. Managing models. Open the Model Manager dialog to add, view, edit, and delete models
(select the 'Model -> Manage' menu item). Then select the “New” toolbar button (white square
with a yellow start in the lower corner). Enter “Model 1 as the name of the model in the “New
Model” dialog.

Model ID: | Model 1| }

[Ok] [Cancel]

Press “Ok” and you will be presented with the Model Editor where you can edit the Notes and
Details for the new model. While the Notes field is limited to 4000 characters, there isn’t a limit
on the Details field. Any information can be used here to distinguish or document models.

When finished editing the new model press the “Save Changes” button in the lower left corner of
the dialog.

Crimson 15

2 Model Editor

Model: MODEL 1
MNotes (4000 char limit):
THIS IS OUR FIRST MODEL. b
v
Details:
Here are the model details. b
v

The new model called “Model 1 should now be listed in the Model Manager, as seen below.

4 0 2 R 9 ? @

Model Name Notes
MODEL 1 THIS IS OUR FIRST MODEL.

Notes: ITHIS IS OUR FIRST MODEL.

Crimson 16

7. Associating models with partitions. From the Tree Manager, select the tree 'F§1TEST'. This
will cause the two partitions (“FS1TEST P1” and “F81TEST_P2”) to be displayed in the
Partitions panel. At this point no model is associated with either partition. Select the first
partition, “F81TEST P1” and from the pull-down menu at the bottom of the Partitions panel,
select the model “Model 1.”

£ Tree Manager

@ o &d R ZT B Q (X
<@
Tree Name Partitions Num Species Max Depth Tot Seq Length | Partitions {length, model):
BLAH2 0 199 0.353207 u] TEST_P2 (1000 bp)
TINY2 1 9 2.170056 4731 TEST_P1 (1000 bp)
TINY 1 9 2.170056 4731
NTEST 2 199 0.353207 20
C100 0 203 4,950929 0
NTEST_NOIN 1 199 0.353207 10
C1000 0 2003 51.600557 0
C1M 0 200003 5036.037658 0
R1M 0 100001 0.099993 0
BD6000 0 11790 2.661029 0
TREE_S0 0 200000 0.561902 0
BDS000_NEX 1 10000 2.170059 4731
[FS1TEST E | 199 | 0.069511 | 2000
\ | =

I g MODEL 1

After selecting the model, the model name will be included in the description of the partition,
following the length of the partition. The model can now be used to help distinguish this
partition when building a query.

£ Tree Manager

@ o B R S B Q 2 ©

Tree Name Partitions Num Species Max Depth Tot Seq Length I
BLAH2 0 199 0.353207 0 N §
TINYZ2 1 9 2.170056 4731 TEST_P1 (1000 bp, MODEL 1)
TINY 1 9 2.170056 4731
NTEST 2 199 0.353207 20
C100 0 203 4,950929 0
NTEST_NOIN 1 199 0.353207 10
C1000 0 2003 51.600557 0
C1M 0 200003 5036.037658 0
R1M 0 100001 0.099998 0
BD6000 0 11790 2.661029 0
TREE_S0 0 200000 0.561902 0
BDS000_MNEX 1 10000 2.170059 4731
[FE1TEST |2 | 199 | 0.069511 | 2000 [
| &
oo, B

Crimson 17

8. Query tree. From the Tree Manager, select the tree 'F81TEST'. This will cause the disabled
toolbar buttons to be enabled. Then select the 'Query' toolbar button (looks like an magnification
glass). Choose 'Ok’ to accept the default query name 'F8ITEST q' from the Query ID dialog.

Query ID: | FB1TEST g

|

Ok il

Cancel]

From the Query Editor, choose 'Random Selection' from the species selection method list. Enter
'50" for the "Number of Leaves' (you must first change the selection method to 'Random
Selection'). Next, change the sequence selection method to 'Random Base Pair Selection' and
enter '100' as the 'Number of Positions'. Then select the partition 'F81TEST P2'. Finally, press
the 'Save and Run' button (it's the green check mark next to the close button).

£ Query Editor

Query: | FB1TEST_Q

Tree Selection

Tree:

Seed: |

Leaf Selection

Selection Method:

- BIX

Generate Seed l @

=R

=1

Sequence Selection

Selection Method:

|Fa1TEST v

Num Partitions:

|Rand0m Selection v

Number of Leaves:

|Rand0m Base Pair Selection

Number of Positions {bp/codon):

2

Num Leaves:

| 503

Temporal Depth:

Positions {(bp/codon):

100%

| 100

Max Temporal Depth:

Level:

| 0.069511 View Distribution
Max Level:
|13 View Distribution

Total Sequence Length (bp)

| 2000

Leaves {ID [Level, Temp Depth]):

Partitions:

TEST_P2 (1000 bp)

TEST_P1 (1000 bp, MODEL

Select A

Select Model

nselect Mode

Crimson 18

Enter 'TEST output' as the output file from the 'Run Query' dialog and then press the 'Run’

button to run the query.
& Run Query 8]

~Output File
ITEST_O utput]

[Browse...]

[]Include Intemal Sequence

~MNumber of Query Runs

| 18

I Run] ’ Cancel

If run successfully, you should see the following in your Message window.

Processing newick:c..ccoceuee.
Query finished.

When editing a query, it’s possible to select tree partitions based on their associated models. To
do this, use the buttons on the lower right corner of the Query Editor. When pressed, you will be
asked to select a model. Depending on the button used, partitions associated with the specific
model, will either be selected or unselected.

£ Query Editor E]E]

Query: I FS1TEST_Q Seed: | Generate Seed l @ | l B | l V | l @ I
Tree Selection | [Leaf Selection [~ Sequence Selection
Tree: Selection Method: Selection Method:
|F81TEST M Manual Selection ' IManuaI Codon Selection v
Num Partitions: Number of Leaves: Number of Positions (bp/codon):
E I - |
Num Leaves: Temporal Depth: Positions (bp/codon):
100 I |
Max Temporal Depth: Level: Partitions:
| 0.069511 View Distributi I [EST_P2 (1000 be)
: S sroon TEST_P1 (1000 bp, MODEL| [EEE=E]
Max Level: Leaves (ID [Level, Temp Depth]):
. T 1 [7, 0.044964000000000004] ~
I 13 View Distribution 22 (8, 0.05285] = d Unselect all
Total Sequence Length (bp) 49 [8, 0.058704] —
29 [6, 0.036703) : o
]2000 o6 [6, 0.029451] Select Model
74 [6, 0.027229000000000003]
42 [S, 0.02404]
65 [S, 0.030975] Unselect Model
5 17.0.0371011 = N) £2

Crimson 19

9. Manage queries. Open the Query Manager dialog (select the 'Query -> Manage' menu item).
From here you can view or edit queries, create new queries, delete queries, and publish (ie save)
queries to the database. Unless a query is 'published,’ it will be deleted when the application is
closed. Thus in order to preserve a query, it must either be exported to a text file or published to
the database. To do this, select the query and press the 'Publish' toolbar button (it looks like a
computer monitor with a small globe next to it). The ‘Saved’ column denotes whether a query
has been published (ie saved) to the database. Whenever a query is modified it must be re-
published in order to save the modifications to the database.

£ Query Manager

Jd @@l d R v v 08 @

Query ID Tree Leaf Selection Seq Selection Saved Output File
R1000_Q R1000 All All yes
TREE-0_Q TREE-O0 All All yes |
Q1 TINY All All yes [=
rowse. ..,

TINY-123_Q TINY all All es
| [FE1TEST_Q | FB1TEST | Randam | Random Base Pai...| no

[Jinclude Internal Sequence

Number of Query Runs

[168

MNotes:

10. View trees. The Walrus display engine can be accessed from Crimson, in order to facilitate
viewing trees. This section assumes the user has installed the necessary Java 3D drivers, as
described in the Installation section of this manual, and launched Crimson using the “crimson-
walrus” script. If the Java 3D drivers are not installed and the Walrus script not used, then

Walrus these routines will not work.

In order to view trees in Walrus, a text file must be created that contains the Walrus specific
description of the tree. This text file is created from a NEXUS file using the jython function

“nex2wal()”.
>>>nex2wal(“F81TEST”, “F81TEST.wal”)

In this example, the NEXUS file “F81TEST” is used to create a Walrus formatted input file
called “F81TEST.wal”, and then the output was displayed in Walrus. An optional argument can
be given that will keep the output from being displayed in Walrus after the conversion is

completed.
>>>nex2wal(“F81TEST”, “F81TEST.wal”, 0)

Crimson 20

Alternatively the user can use the “View Tree” button in the Tree Manager dialog. This will
automatically export the tree to a Nexus file, convert the file to a Walrus format, and then display
the file.

£ Tree Manager

=

@ Statistics Newick \@ 2 @ Q m @

U

Tree ID Partitions Num Leaves Binlin;— Ultrametric Partitions (length, model):
TINY 1 5 yes yes TEST_P2 (1000 bp)
F81X100 1 100 yes no TEST_P1 (1000 bp, MODEL_1)
BDG000D 0 5895 no no
COMB_100K 0 100002 yes no
VAR _1IM 0 1000000 yes yes
PAUP_SO 0 100000 no yes
NTEST 1 100 yes no
TINY-4BC 3 S yes yes
TINY2 1 S yes yes
BDS000_NEX 1 5000 no es
[FB1TEST | 2 | 100 | ves | no [
)| &
|MODEL_1 v

The same option can be accessed via the Menu by choosing 'Tree -> View Tree...' to access a
Tree Selector dialog where the user can pick the tree to be displayed. The tree will again be
exported to a Nexus file and then imported into Walrus.

Crimson 21

Query Options:

There are many different ways to query a tree. All of the options are available from the Query
Editor panel and CLI. Here we describe the different options.

Leaf Selection Methods:
Select All: Selects the entire tree.

Random Selection: Randomly selects the specified number of leaves from the tree.
Inner nodes will be included as needed to build the subtree specified by the leaves selected.

Select by Temp Depth (dist): The tree is sliced at the user specified temporal depth
(threshold) and all resulting subtrees, below the threshold, are sampled. The user specifies the
total number of leaves to be sampled and this number is divided by the number of subtrees to
determine how many leaves are randomly sampled from each subtree. If the number of leaves to
be sampled does not divide evenly among the subtrees, then random subtrees will be sampled an
additional time. If a subtree contains fewer leaves than requested, then the additional leaves
requested will not be returned. For example, if there are 3 subtrees and the user requests 10
leaves, each subtree will be sampled three times with one of the subtrees sampled a fourth time.
If one of the subtrees only contains two leaves, then the resulting tree would only contain 9
leaves. If the subtree with only two leaves were randomly selected to be sampled a fourth time,
then the resulting tree would only contain 8 leaves.

Select by Temp Depth (weighted): The tree is sliced at the user specified temporal
depth (threshold) and all resulting subtrees, below the threshold, are computed. The leaves of all
the subtrees are pooled and then collectively sampled according to the number of leaves
requested by the user. Thus subtrees with more leaves are more likely to be sampled and it’s
possible for some subtrees to not be sampled at all.

Select by Level (dist): This is the same as “Select by Temp Depth” but the threshold is
based on the level (number of ancestors to the root), instead of the temporal depth.

Select by Level (weighted): This is the same as “Select by Temp Depth” but the
threshold is based on the level (number of ancestors to the root), instead of the temporal depth.

Manual Selection: The user manually chooses which leaves, based on the leaf IDs, to
included in the output tree.

Sequence Selection Methods:
These methods are applied to which ever partitions the user specifies.
Select All: Selects all base pairs.

Random Codon Selection: Randomly selects the specified number of codons. If the
number of base pairs is not evenly divisible by 3, then the last codon, if selected, will be
incomplete.

Random Base Pair Selection: Randomly selects the specified number of base pairs.

Crimson 22

Manual Codon Selection: The user manually specifies the codons to include. The
codons are indexed from 1 (the first codon) to N (the last codon). Ranges can be used to specify
a set of codons that are adjacent to one another. For example, “1:4:12-16:56” would include
codons 1, 4, 12, 13, 14, 15, 16, and 56.

Manual Base Pair Selection: The user manually specifies the base pairs to include. The
base pairs are indexed from 1 (the first bp) to N (the last bp). Ranges can be used to specify a set
of base pairs that are adjacent to one another. For example, “1:4:12-16:56” would include base
pairs 1,4, 12, 13, 14, 15, 16, and 56.

Select None: No base pairs will be returned. The resulting Nexus file will only contain
tree structure information.

Crimson 23

Scripting Language:

The command line interface is a Java implementation of Python called Jython. It contains most
standard Python commands and allows the user to access all built-in Java objects. In order to
facilitate the integration of the java API with the CLI, we created two jython files that load basic
functions and globals into the CLI. Users are advised to review the ‘header.py’ and ‘startup.py’
files to better understand how the java API is loaded into the CLI and how to access the java
API. Below are the main routines that are user accessible from these files.

Header.py:

This file loads the basic crimson objects and globals. Users are advised to include this
file in any Jython files they might create.

console: This is a reference to the actual CLI object. Users can use this object to send
commands to the console (ex ‘console.exec(“print 1+27)’).

runtime: This is a reference to the runtime object for the application session.

Startup.py:
This file contains the built-in Jython functions.
General Functions:
quit(): Quits the application.

execute(cmd): Executes the command 'cmd'. If Windows OS then will prepend 'cmd /c',
otherwise it will prepend 'sh -c' which is necessary for Linux.

loadPython(script): Load the python script into the command line.

viewAPI(): Launch HTML viewer to view Java API documentation.

resetGlobals(): Reset user-definable global variables to their default values.

about(): Prints version information.

time([inMillis]): Prints the current time. If inMillis is true then time is
returned in milliseconds.

help([command]): Prints help for user-defined functions: ‘help()’ print list of
commands. ‘help(KUDF>)’ print extended documentation for 'UDF"'.

helpList(): For help on a specific built-in functions type 'help(<name>)' at the console.

Crimson Functions:

setVerbose(val): Changes the feedback verbosity of the application. The amount of
detailed feedback is as follows: 2 = lots, 1 = no warnings, 0 = no feedback. This
value will persist across instances of the application.

setTmpDir([val]): Changes the default directory used for temporary dataloader files
(CrimsonUtils.TMP_DIR).

Crimson 24

getTmpDir(): Returns the default directory used for temporary files.

setUsername(val): Changes the default username used to connect to database. This is
also updated every time a valid database connection is made.

setDatabase(val): Changes the default database used. This is also updated every time a
valid database connection is made.

getTree(id): Returns the tree object from the treePool.

getPartition(id): Returns the partition object from the partitionPool.
getModel(id): Returns the model object from the modelPool.

getQuery(id): Returns the query object from the queryPool.
importQuery(filename): This will load a query from the specified python file.

exportQuery(id, path): This will save the query to a python file that can be reload into
jython. If the file already exists, it will be overwritten.

Database Functions:
setDBType(type): Sets the type of database (‘Oracle’ or ‘MySQL”).

openDatabase(username, password, server, port, database): Connects to the specified
database. If username, database, or server are empty, then the default values will
be used. If port is 0, then its default will be used. When a valid connection is
made, the default values for username, database, server, and port will be updated.

closeDatabase(): Closes the connection to the database.
testConnection(): Performs a simple SQL query to test the database connection.

execUpdate(sql): This will execute SQL commands that update the database (i.e.
CREATE, DROP, INSERT, DELETE, etc). This will return 1 if it completes or 0
on error. COMMIT will automatically be run after the execution of the sql
statement.

execSQL(sql): This will execute SQL queries of the database. This can be used, for
example, to run Oracle 'SELECT" statements.

loadTree(filename , treelD [, partitionID]): This will load the NEXUS file 'filename’'.

appendTree(filename, treelD, partitionID): This will process the NEXUS file
'filename' and prepare the file to be appended into database tables <treeID> P and
<tree id> T.

removeTmpFiles(treelD): This will remove any files stored in
CrimsonUtils.TMP_DIR.

exportTree(treelD): This will save the tree and all partition data as a NEXUS file.
exportStruct(treelD): This will save the tree structure as a NEXUS file.

exportPartition(treelD, partitionID): This will save the selected partition to a NEXUS
file.

Crimson 25

deleteTree(id [, delQueries]): Deleted the tree from the database, including any partition
data. If any queries reference the tree and 'delQueries' is true, then the queries
will also be deleted. If 'delQueries' is false (default value) and related queries are
found, then the tree will not be deleted.

deletePartition(id): Deletes the partition from the database
loadAllTrees(): This will load all of the trees in the current database.
loadAllModels(): This will load all of the models in the current database.

deleteModel(id): Moves a model from the database into the Oracle recycle bin. The
model can thus be restored or permanently deleted (when the recycle bin is
purged).

loadAllQueries(): This will load all of the queries in the current database. If a query
already exists with the same id, then the new query id will be changed so as to not
conflict with the existing query.

loadQuery(id): This will load the specified query from database.

publishQuery(id): This will add the specified query to the database if it doesn't already
exist in the database. If it already exists then it will update the database entry.

runQuery(id [, output, incSequence, repeat]): This will run the specified query, saving
the output in the specified NEXUS file, including the CRIMSON and TREE
blocks and excluding the query notes. Repeat is the number of times the query
will be run. If the query.seed() is set, then runs can't be more than 1. If only the
query ID is given, then a dialog will be presented to get the remaining
information.

runPhylipQuery(id, output, incTree): This will run the specified query, saving the
output to a phylip file. The generated tree will be returned or Null on error. There
are multiple options dictated by incTree: incTree = ‘0’ -> no tree will be output;
incTree = ‘1’ -> no tree will be output; incTree = ‘2’ -> tree ouptut to second
NEXUS file ("<output>.tree"); incTree = ‘3’ -> rooted tree ouptut to a newick file
("<output>.newick"); incTree = ‘4’ -> unrooted tree ouptut to a newick file
("<output>.newick").

runNexusQuery(id, output, incSequence, incCrimson, incTree, incNotes): This will
perform a tree query. If incCrimson is false then the CRIMSON block will not be
included. If incNotes is true then the Query.notes will be appended to the end of
the NEXUS file. The notes can, for example, contain a PAUP block. It is assumed
that the notes are properly formatted for the NEXUS file. If Query.onlyStruct is
true then incCrimson and incTree will be ignored. The generated tree will be
returned or Null on error. There are multiple options dictated by incTree: incTree
=0 -> no tree will be output; incTree = 1 -> tree is included in NEXUS file;
incTree = 2 -> tree ouptut to second NEXUS file ("<output>.tree"); incTree = 3 ->
rooted tree ouptut to a newick file ("<output>.newick"); incTree = 4 -> unrooted
tree ouptut to a newick file ("<output>.newick").

deleteQuery(id, fromDatabase): This will remove the specified query from the the
queryPool. If 'fromDatabase’ is true (= 1), then it will also remove the query from
the database.

Crimson 26

deleteQueryFromDatabase(id): This will remove the specified query from the database
and the queryPool.

GUI Functions:

menu(): States the application's GUI. By default, this is run when startup.py is loaded.
treeManager(): Displays the tree manager.

modelManager(): Displays the model manager.

newModel(): This will create a new model object. The model object will then be
opened in a ModelEditor panel.

editModel(id): This will open the model object in a ModelEditor panel.
viewModel([id]): This will display the model's parameter values.
queryManager(): Displays the query manager.

newQuery(treelD): This will create a new query object that is set to edit the specified
tree. The query object will then be opened in a QueryEditor panel.

editQuery(id): This will open the query object in a QueryEditor panel.
viewQuery([id]): This will display the query's parameter values.

User Functions:
tree2wal(id): This will display a tree in the Walrus 3D viewer.

nex2wal([inFile [, outFile [, view [, min]]]]): This will convert a nexus file to a walrus
format for viewing in Walrus. If the input or output file names are empty, then a
graphical dialog will be presented to query the user for the file names. If 'view'is
true, then after converting the file, it will be displayed in a new Walrus viewer, if
not present then it is assumed to be true. If 'min’ is true, then the output file will
not contain any extra display info, such as species IDs or branch lengths. This
will produce a significantly smaller file that will only allow for the display of the
tree structure.

runWalrus([file]): This will display the file using the Walrus 3D viewer.

connectCIPRES(): Open a read-only connection to the SDSC Oracle server, using a
web proxy.

Schema:

Crimson 27

When a connection is made to a database, Crimson checks for the existence of the necessary
tables. If the tables do not exist then Crimson will create the tables. Most of the tables should be
self-explanatory (TREES contains tree data, etc). However, the PARTITIONS table only
contains the header info for the partitions, while the PART DATA table contains all partition

data.

| trees v
ID VARCHAR(100)
MODEL_ID VARCHAR(100)
NOTES VARCHAR(4000)
NUM_SPECIES INT(11)
NUM_LEAVES INT(11)
IS_BINARY TINYINT(4)
IS_ULTRAMETRIC TINYINT(4)
MIN_LEVEL INT(11)
MAX_LEVEL INT(11)
MIN_STEM_LENGTH DOUBLE
MAX_STEM_LENGTH DOUBLE
MIN_TEMP_DEPTH DOUBLE
MAX_TEMP_DEPTH DOUBLE

NEWICK LONGTEXT
v
PRIMARY
TREE2_FK

| partitions v
ID VARCHAR(100)
TREE_ID VARCHAR(100)
MODEL_ID VARCHAR(100)
NOTES VARCHAR(4000)
LENGTH INT(11)

PRIMARY
PART2_FK

PART3_FK

"~ | MODELS v
ID VARCHAR(100)
NOTES VARCHAR(4000)

DETAILS LONGTEXT
v

PRIMARY

"~ | part_data v
PARTITION_ID VARCHAR(100)
SPECIES_ID VARCHAR(100)
MODEL_ID VARCHAR(100)
NOTES VARCHAR(4000)

SEQUENCE LONGTEXT
STRUCTURE LONGTEXT

v
PRIMARY
PD3_FK
~| queries v

ID VARCHAR(100)
TREE_ID VARCHAR(100)
NOTES VARCHAR(4000)
LEAF_SELECT TINYINT(4)
NUM_LEAVES INT(11)
TEMP_DEPTH_THRESH DOUBLE
LEVEL_THRESH INT(11)
LEAVES LONGTEXT
SEQ_SELECT TINYINT(4)
NUM_POS INT(11)
PARTITIONS LONGTEXT

POSITIONS LONGTEXT
SEED BIGINT(11)

PRIMARY
QUERY2_FK

Crimson 28

NEXUS File Format

Crimson uses the NEXUS file format to facilitate the exchange of data with external programs.
For our purposes here, Crimson use two public blocks (‘TREES’ and ‘DATA’) and one private
block (‘CRIMSON’). Any other blocks in the NEXUS file will be ignored. While Crimson will
output NEXUS files containing multiple data partitions, the current version is not able to import
NEXUS files with more than one data partition. Below is a simple example of a valid NEXUS
input file with a tree structure and one data partition containing sequence and structure data.
Also included below is an example of a multiple partition NEXUS output file.

If DATA and/or CRIMSON data is included in the NEXUS file, then it must be included for
every species. The DATA and CRIMSON entries must all have the same length (ie the same
number of columns). Every species ID must be unique and all inner node IDs must begin with
“ . To facilitate parsing of the NEXUS file spaces, not tabs, should be used to separate the
species IDs from the DATA and CRIMSON data.

The CHARACTER block can be used in place of the DATA block, however the matrix
formatting must be the same; that is, the CHARACTER block must include the “NEWTAXA”
subcommand with relevant data formatting.

The current NEXUS parser does not properly handle in-line and multi-line comments. Lines that
begin with ‘#’ or ‘[are treated as comments.

Crimson will properly quote tree and partition IDs that contain characters considered special by
NEXUS. However, Crimson does not quote species IDs when exporting to a NEXUS file. Thus
species IDs must not contain special characters such as ‘- and ©_’.

The method runNexusQuery() will include a query’s notes in the NEXUS output file. This can be
helpful to include PAUP blocks in query output. See the script ‘exBatchScript-3.py’ for an
example of exporting PAUP code into NEXUS files.

For more information about the structure of NEXUS files, please see D.R. Maddison, D.L.
Swofford, W.P. Maddison, Systematic Biology, Vol. 46, No. 4 (Dec., 1997), 590-621.

http://links.jstor.org/sici?sici=1063-
5157%28199712%2946%3 A4%3C590%3 ANAEFFF%3E2.0.C0%3B2-H

Crimson 29

————— Example NEXUS file with single partition (including internal sequences) -----
#NEXUS

BEGIN TREES;

TREE treel = ((S1:0.151029, S2:0.039464)I2:0.078164, S3:0.040122,
S4:0.151029)IR:0.004586;
END;

BEGIN DATA;
DIMENSIONS NTAX=6 NCHAR=10;
FORMAT DATATYPE=RNA GAP=-;

MATRIX
IR -—-ACACUGGA
I2 —-—-ACACUGGA
S1 -—-AAAUUGAA
S2 -—-UCGGUGAA
S3 —-—-CAUUUGGG
S4 -—-ACAAGGUA

END;

BEGIN CRIMSON;

MATRIX
IR < 00O«
I2 0O«
S1 <00
S2 - 0))))
S3 - 0)))))
sS4 00O«

END;

Crimson 30

————— Example NEXUS file with multiple partitions (not including internal sequences) -----
#NEXUS

BEGIN TREES;

TREE treel = ((S1:0.151029, S2:0.039464)I2:0.078164, S3:0.040122,
S4:0.151029)IR:0.004586;
END;

BEGIN DATA;
DIMENSIONS NTAX=4 NCHAR=10;
FORMAT DATATYPE=RNA GAP=- INTERLEAVE;

MATRIX

[FOO_P1]
s1 --ARA
S2 --UCG
s3 --CAU
s4 --ACA

[FOO_P2]
s1 UUGARA
S2 GUGAA
s3 UUGGG
s4 AGGUA

END;

BEGIN CRIMSON;
MATRIX
[FOO_P1]
s1 o
S2)
s3 o
s4 o

[FOO_P2]
s1)
S2)
s3)
s4 (

END;

BEGIN SETS;
CharPartition partition =
‘FOO _P1’:1-5
, ‘FOO_ P2’ :6-10
; END;

Crimson 31

Walrus 3D Viewer

Walrus is a Java application that was developed to provide for 3D viewing of large graphs, such
as trees. Crimson includes a jython script (“nex2walrus.py”) to export a tree as a walrus input
file.

In order to view trees in Walrus, a text file must be created that contains the Walrus specific
description of the tree. This text file is created from a tree using the jython function
“tree2wal()”.

>>> tree2wal(“F81X100”)

In this example, the tree “F81X100” is used to create a Walrus formatted input file, and then the
output was displayed in Walrus. Since no file name was given, a default name of

“ tmpOutput.wal” was used for the Walrus file generated. Optional arguments can be given to
(1) specify the output file, (2) specify whether the output will be display (as opposed to just the
creation of the output file, and (3) specify whether color coding is included in the output file (this
significantly increases the size of the output file).

It is also possible to view a previously created Walrus formatted tree file.
>>> runWalrus(“F81X100.wal”)

When viewing a tree in Walrus, it is possible to display the ID and branch length values for each
species, as well as color code the branches of the tree based on branch length. See the Walrus
documentation for more information about accessing these options.

Because of extra information needed to display species IDs, branch lengths, and color
information, Walrus output files can be significantly larger than the initial tree files. Thus, for
large trees, it is possible to create a Walrus file that doesn’t have any of the extra information.
These files will allow for the viewing of the tree in Walrus but without the ability to view the
individual species IDs and such. To create a minimal Walrus file:

>>>nex2wal(“F81X100”, “F81X100.wal”, 1, 1)

The GUI can be used to automatically export a tree into a Walrus file and then display the file in
Walrus. See Section 10 of Usage Examples (page 19) for information about accessing Walrus
from the GUI.

Walrus was created by Young Hyun. For more information:
Email: youngh@caida.org
WWW: http://www.caida.org/tools/visualization/walrus

Note that most VNC servers do not have the ability to display 3D images. Thus Walrus may not
work with VNC.

Crimson 32

Below is an example of Walrus displaying a tree with 100 leafs. The species IDs and branch
lengths are shown for three species that were selected.

£ Walrus 0.6.3 -- F81x100.wal

File Rendering Display Spanning Tree Color Scheme Node Label

0.005431; 37

0.006417; 30

0.001378; 84

Branch_Length: 0.005431 Id: "37"

Crimson 33

Below is an example of Walrus displaying a tree with 100,000 leafs (200,000 total nodes).

& Walrus 0.6.3 -- largetree.wal @ L]

Eile Rendering Display Spanning Tree Color Scheme Node Label

Graph loaded.

Crimson 34

Loading Very Large Data Partitions:

The Crimson application is able to load very large trees (for example, trees with over 2,000,000
species) into Oracle and MySQL databases. However, data partitions for trees this large often
contain 20 to 60 GB of data. While the application is capable of loading these large data
partitions, it is much more efficient to use native utilities to load these large data partitions into
the database.

The instructions below describe how to load large data partitions into Oracle and MySQL using
native utilities. These instructions are for advanced users who are familiar with maintaining
Oracle or MySQL databases. Users should be familiar with the database schema prior to using
these data loading methods (see SCHEMA, page 27).

Oracle:

1. Load tree structure. Using a NEXUS file that only contains the newick tree
structure, load the tree into the database. This will create the necessary entry in the
TREES table and allow us to append the partition data to the tree.

2. Format data file. Oracle contains a native utility called “sqlldr” that very efficiently
loads large data sets into an Oracle database. To use sqlldr, we must split the NEXUS
file into specific data files. Crimson contains a python utility called ‘split_nex.py’
that will appropriately format the data.

% split_nex.py SIM_8000.nex S8000

This will split the NEXUS file called ‘SIM_8000.nex’ into three files: S8000.tax,
S8000.chr, and S8000.crm. These files will contain the species labels (*.tax),
character data (*.chr), and structure data (*.crm).

3. Create control file. Sqlldr uses a control file to configure the loading of the data.
This file is a simple text file that contains information about which data files to use
and how to load them into the PART DATA table. An example control file is
included below, which has been formatted to load the S8000 data partition. Note that
the PARTITION ID has been set to ‘S8000 PART’. This is user definable.

MySQL:

Crimson 35

OPTIONS (DIRECT=TRUE)
UNRECOVERABLE
LOAD DATA
INFILE 'S8000.tax'
BADFILE 'S8000.bad’'
DISCARDFILE 'S8000.dsc'
APPEND
INTO TABLE PART DATA
FIELDS TERMINATED BY '\n'
TRAILING NULLCOLS
(
PARTITION ID CONSTANT 'S8000 PART'

, SPECIES ID CHAR
, MODEL ID CHAR
, NOTES CHAR
, SEQUENCE LOBFILE (CONSTANT 'S8000.chr') TERMINATED BY '\n'
, STRUCTURE LOBFILE (CONSTANT 'S8000.crm') TERMINATED BY '\n'

)

Run sqlldr. After the data files have been processed and the control file created,
sqlldr is ready to be run. The following sqlldr example, assumes the control file is
called ‘sqlldr.ctl’, the Oracle user login is ‘myuserid’, the Oracle user password is
‘mypasswd’, and the Oracle server is ‘mydbhost’. According to the control file, the
data from the S8000.chr and S8000.crm files will be loaded into the PART DATA
table.

$ sqlldr userid=myuserid/mypasswd@mydbhost control=sqlldr.ctl log=sqlldr.log

Update PARTITIONS table. Once the data has been loaded, it is necessary to link
the data in the PART DATA table with the tree in the TREES table. To do this, we
will add a row to the PARTITIONS table. This can be done from the Crimson
command line interface, using the ‘execUpdate()’ command.
>>> execUpdate("INSERT INTO PARTITIONS (ID, TREE ID, LENGTH)
VALUES ('S8000 PART", 'S8000', 1883)")

This command will insert a row into the PARTITIONS database that connects the
data in PART DATA identified by the ID ‘S8000 PART’ with a tree in the TREES
table identified by the ID ‘S8000°. In this example the data partition sequences
contain 1883 base pairs. Note that the tree must exist in the TREES table prior to
running this command.

A utility has not been included to process data files for fast loading into MySQL
databases. Ifloading large data files into MySQL, the Oracle instructions above would
apply, although the data file would have to be structured appropriately for the MySQL
‘LOAD DATA’ command. The ‘LOAD DATA’ command would be used in place of the
Oracle sqlldr command.

Crimson 36

System Requirements:

* Pentium (x586) or later processor, or equivalent

e atleast 512MB of RAM (1024 MB recommended)
e atleast 20 MB of hard drive space

* Javaversion 1.5 or later

* Oracle 10.X (or later) or MySQL 5.0 (or later)

Crimson 37

Known Issues:

* When logging into SDSC via direct connection (ie not through proxy) then it takes 10 to
15 minutes to load the queries.

* Need to speed up building of large trees. It currently takes about a minute to build a one
million leaf tree.

* Need more secure handling of database passwords.

* Create GUI dialog for setting of application parameters.

* Create MySQL data preprocessor for loading large datasets.

* Update NEXUS output to use CHARACTERS/TAXA blocks instead of DATA block.

Crimson 38

License:

KIM LABORATORY SOFTWARE AND DATA LICENSE
Version 1.0, August 2007

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.
“License” shall mean the terms and conditions for use, reproduction, and distribution as
defined by Sections 1 through 9 of this document. Your use of the Work and Derivative
Works in Source or Object form constitutes acceptance of this License.

“Licensor” shall mean the copyright owner or entity authorized by the copyright owner
that is granting the License.

“You” in this License, and “Your” when used in the possessive, means an individual or a
legal entity exercising rights under this License. For legal entities, “You” includes any
entity that is controlling, controlled by or under common control with You. For purposes
of this definition, “control” means the direct or indirect ownership of more than fifty
percent (50%) of the outstanding voting securities of a legal entity, the right to receive
fifty percent (50%) or more of the profits or earnings of a legal entity, or the right to
determine the policy decisions of a legal entity.

“Source” form shall mean the preferred form for making modifications, including but not
limited to software source code, documentation source, configuration files, and data files.

“Object” form shall mean any form resulting from mechanical transformation or
translation of a Source form, including but not limited to compiled object code, generated
documentation, and conversions to other media types.

“Work” shall mean the work of authorship, whether in Source or Object form, made
available under the License, as indicated by a copyright notice that is included in or
attached to the work.

“Derivative Works” shall mean any work, whether in Source or Object form, that is based
on (or derived from) the Work and for which the editorial revisions, annotations,
elaborations, or other modifications represent, as a whole, an original work of authorship.
For the purposes of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of, the Work and
Derivative Works thereof.

2. Grant of Copyright License. You may use the Work and Derivative Works for any non-
commercial purpose, subject to the restrictions in this License. Some purposes which can be
non-commercial are teaching, academic research, and personal experimentation.

Crimson 39

3. Redistribution. You may modify the Work and Derivative Works and distribute the Work
or Derivative Works for non-commercial purposes, provided that You meet the following
conditions:

(a) You may not grant rights to the Work or Derivative Works that are broader than those
provided by this License (for example, you may not distribute modifications of the
Work under terms that would permit commercial use, or under terms that purport to
require the Work or Derivative Works to be sublicensed to others); and

(b) You must give any other recipients of the Work or Derivative Works a verbatim copy
of this License; and

(c) You must cause any modified files to carry prominent notices stating that You
changed the files; and

(d) You must retain, in the Source form of any Derivative Works that You distribute, all
copyright, patent, trademark, and attribution notices from the Source form of the
Work, excluding those notices that do not pertain to any part of the Derivative Works;
and

(e) If the Work includes a “NOTICE” text file as part of its distribution, then any
Derivative Works that You distribute must include a readable copy of the attribution
notices contained within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one of the following places:
within a NOTICE text file distributed as part of the Derivative Works; within the
Source form or documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and wherever such third-party
notices normally appear. The contents of the NOTICE file are for informational
purposes only and do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside or as an addendum to
the NOTICE text from the Work, provided that such additional attribution notices
cannot be construed as modifying the License.

You may add Your own copyright statement to Your modifications and may provide
additional or different license terms and conditions for use, reproduction, or distribution of
Y our modifications, or for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with the conditions stated in
this License.

4. Exclusions From License Grant. You may not use or distribute the Work or Derivative
Works in any form for commercial purposes. Examples of commercial purposes would be
running business operations, licensing, leasing, or selling the Software, or distributing the
Work or Derivative Works for use with commercial products.

No other rights are granted in this License. You and Your affiliates, sublicensees,
employees, and agents may not use any name, logo, seal, or trademark of Licensor or any
affiliate organization, employee, student or representative of the Licensor, without the prior
written consent of the Licensor.

10.

11.

Crimson 40

Retained Rights. The Licensor retains the right to copy the Work, prepare Derivative
Works based upon the Work and distribute the Work or Derivative Works to any person or
entities for any purpose.

Termination. This License is effective until terminated. You may terminate this License at
any time upon notice to the Licensor. This License will terminate immediately without notice
from the Licensor if You fail to comply with any provision of this License. Upon termination
for any reason, You must destroy all copies of the Work and Derivative Works in Your
possession and control.

Government Rights and Restrictions. You acknowledge that the License is expressly
subject to reserved rights of the United States Government, if any, under all applicable
statutes and regulations. You agree to comply with all laws, rules and regulations applicable
to the use of the Work and Derivative Works, and You will be responsible for obtaining, at
Your expense, any governmental approvals required to use the Work and Derivative Works.
All rights granted to You under this License are contingent upon Your compliance with
United States laws and regulations controlling the export of technical data, computer
software, laboratory prototypes, and all other export controlled commodities, including,
without limitation, the Arms Export Control Act and the Export Administration Act as they
may be amended.

Entire Agreement. The terms and conditions contained in this License constitute the entire
agreement between the parties and supersede all previous agreements and understandings,
whether oral or written, between the parties with respect to the subject matter. This License
may not be amended without a written agreement signed by an authorized representative of
the Licensor.

Severability. If any provision of this License shall be determined to be void, invalid,
unenforceable or illegal for any reason, then the validity and enforceability of all of the
remaining provisions hereof shall not be affected thereby.

Miscellaneous. This License will be binding upon and inure to the benefit of the parties and
their respective permitted successors and assigns. This License shall be construed and
interpreted and its performance shall be governed by the laws of the Commonwealth of
Pennsylvania without reference to the conflicts of law principles of any jurisdiction.

Disclaimer of Warranty. You expressly acknowledge and agree that use and distribution of
the Work and Derivative Works is at Your sole risk. The Work and Derivative Works is
provided “AS IS” and without warranty of any kind. THE LICENSOR MAKES NO
REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO ANY WARRANTY OF ACCURACY, COMPLETENESS,
PERFORMANCE, MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
COMMERCIAL UTILITY, NON INFRINGEMENT OR TITLE. THE LICENSOR DOES
NOT WARRANT THAT THE FUNCTIONS CONTAINED IN THE WORK AND
DERIVATIVE WORKS WILL MEET YOUR REQUIREMENTS, OR THAT THE
OPERATION OF THE WORK AND DERIVATIVE WORKS WILL BE
UNINTERRUPTED OR ERROR-FREE.

Crimson 41

12. Limitation of Liability. IN NO EVENT, INCLUDING NEGLIGENCE, WILL THE
LICENSOR BE LIABLE TO YOU, YOUR SUCCESSORS OR ASSIGNS, OR ANY
THIRD PARTY FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL OR
CONSEQUENTIAL DAMAGES OF ANY KIND THAT RESULT FROM THE USE OR
DISTRIBUTION OF THE WORK AND DERIVATIVE WORKS OR ARISE UNDER
THIS LICENSE, EVEN IF THE LICENSOR HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

Crimson 42

Contact Information:

Susan Davidson susan(@cis.upenn.edu
Computer Science Department (215) 898-3490
University of Pennsylvania

3330 Walnut Ave.

Philadelphia, PA 19104

Stephen Fisher safisher@sas.upenn.edu
Biology Department (215) 898-8395
University of Pennsylvania

433 S. University Ave

Philadelphia, PA 19104

Junhyong Kim junhyong@sas.upenn.edu
Biology Department (215) 746-5187
University of Pennsylvania

433 S. University Ave

Philadelphia, PA 19104

Microsoft, Windows, is either a registered trademark or trademark of Microsoft Corporation in
the United States and/or other countries.

Copyright © 2006
Stephen Fisher, Susan Davidson, and Junhyong Kim.
Biology and Computer Science Departments, University of Pennsylvania

