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1 Tutorial Summary

All biological disciplines are united by the idea that species share a common history. The genealogical
history of life - also called an \evolutionary tree" - is usually represented by a bifurcating, leaf-labeled tree.
The use of evolutionary trees is a fundamental step in many biological problems, such as multiple sequence
alignments, protein structure and function prediction, and drug design.

The primary scienti�c objective of phylogenetic studies is not to solve a given optimization problem,
but rather to recover the order of speciation or gene duplication events represented by the topology of the
true evolutionary tree. (Locating the root of the evolutionary tree is a scienti�cally di�cult task, so that a
method is considered to have been successful if it recovers the topology of the unrooted tree.) This means
that good or poor performance with respect to optimization problems is only important to the degree that
it guarantees good or poor performance with respect to topology estimation.

Unfortunately, inferring evolutionary trees is an enormously di�cult problem for several reasons. For
one, the phylogeny problem is a di�cult statistical problem because its parameter space has a complicated
structure, and there is no `o� the shelf' solution to the phylogeny problem that can be applied. The
phylogeny problem also presents a considerable computational challenge. Typical data sets now consist of
several hundred species, and presently available tree reconstruction methods are inadequate to the task of
analyzing such datasets. For example, an rbcL DNA sequence data set of 500 plants has been analyzed
for several years now, without solution. The explanation for why these analyses are so di�cult is simple:
the optimization problems are NP-hard, and the heuristics used in an attempt to solve these optimization
problems use hill-climbing techniques to search through an exponentially large space of phylogenetic trees.

Statistical approaches towards phylogeny reconstruction have modeled the evolutionary process stochasti-
cally, and have studied the performance of methods for recovering phylogenetic trees in terms of the accuracy
of these methods on datasets of �nite length sequences generated under di�erent model trees. These studies
have shown that some methods recover the true tree topology with high probability, once the sequences are
long enough, while other methods have no such guarantees. Over the last decade or so, computer scien-
tists have also begun to design and analyze the performance of phylogenetic methods under these statistical
models.

One of the results of this interest in using statistical models of evolution to explore the performance of
di�erent methods for tree reconstruction is the recent development of analytical techniques for estimating
the sequence lengths that su�ce for accuracy with high probability of a given phylogenetic method, when
applied to data generated on a �xed model tree. These techniques have shown that a number of polynomial
time methods converge to the true tree from sequences of lengths that grow exponentially in n, the number
of leaves in the tree. More recently, these techniques have been extended to show how to develop methods
that are fast-converging, so that they recover the true tree topology with high probability from sequences
that grow only polynomially in n, and typically grow polylogarithmically. These advances may represent the
�rst breakthroughs towards obtaining polynomial time methods that can handle large evolutionary datasets.

This tutorial will present the techniques for analyzing convergence rates, and describe the basics of the
fast-converging methods. No background in probability, statistics, or phylogenetics will be assumed.



2 Basics

An evolutionary tree (also called a phylogenetic tree) models the evolution of a set of taxa (species, biomolec-
ular sequences, languages, etc) from a common origin. Thus, an evolutionary tree is rooted at the most
recent common ancestor of the taxa, and the internal nodes of the tree are each labeled by a hypothesized
or known ancestor. The common practice today is to use biomolecular sequences as representatives of the
species set, so that the leaves of the tree are labeled by biomolecular (DNA, RNA, or amino acid) sequences.
Morphological features are also used to assist in the reconstruction of phylogenetic trees. Both morphologi-
cal features and aligned biomolecular sequences de�ne qualitative characters, which means that they induce
a partition of the species set into distinct character states. Thus, for example, the morphological feature
vertebrate-invertebrate de�nes a binary (two-state) character. When using biomolecular sequences, each site
(i.e. position) within the multiple alignment de�nes a character, so that the sequences having the same
nucleotide (or amino-acid) at that site exhibit the same state of that character.

Thus, any given set of species set S can be represented by the values each species in S attains for each of
the characters in a set C of characters; hence, we can represent the input to a phylogenetic reconstruction
problem by a jSj � jCj matrix such that the ijth entry is the state of the ith species for the jth character.
A phylogenetic tree T is a tree whose leaves are labeled by the species in the set, and are numbered by
1; 2; : : : ; n. The objective then of a phylogenetic reconstruction algorithm is to �nd a tree which best �ts the
data.

At this point, it is important to point out again the biological assumptions of this input matrix. Our
assumption is that rows of the matrix represent biological entities that have arose through a sequence of
multiplications from a single common ancestor. Here, by \multiplication" we mean biological events like
gene duplication, cell duplication, speciation, and so on. A graphical representation of this sequence of
multiplications is the tree. The columns of the matrix represent measurements where some aspect of the
measurement is shared among the row objects by common descent from the single ancestor. This shared
attribute due to common ancestry is called homology. Therefore, in biomolecules we assume that their
positional organization arose from common descent and we talk of positional homology. The importance of
these concepts is to point out where a phylogenetic tree analysis is inappropriate. First, it is inappropriate
to apply phylogenetic tree analysis where we do not expect a hierarchical (tree-like) data structure-e.g.,
expression patterns of genes. Second, it is an inappropriate tool when there is no reasonable way to establish
homology of the characters-e.g., presence-absence of protein folds.

Our discussion of tree reconstruction is not concerned with the location of the root of the tree, because the
location of the root is di�cult to achieve with any degree of accuracy. However, rooted trees are reconstructed
by systematic biologists, and the technique generally employed is to use an outgroup, which is a taxon which
is clearly less related to the rest of the group than any two members in the group are to each other. For
example, if we were interested in the phylogenetic relationship of primates, we might use some other mammal
that is clearly not a primate, say a mouse, as the outgroup. Once the best unrooted tree containing the
outgroup is constructed, the unrooted tree can be \rooted" on the edge separating the outgroup from the
rest of the taxa. The problem with using outgroups is that what appears to be an outgroup may not in fact
be an outgroup (if all \outgroup?" decisions were easy, then trees would be easy to construct using methods
in [74]), and that if the taxon is de�nitely an outgroup, it may be di�cult to locate the edge to which it
should attach because it might be very di�erent from the tingroupv. For example, an bacterium is clearly an
outgroup member with respect to primates, but they are too di�erent to even easily determine homologous
characters. There is also a not-so-commonly used rooting method called mid-point rooting. In mid-point
rooting the longest edge-weighted path between two terminal taxa are found and the tree is rooted at the
mid-point of this path [107]. However, the rationale for this method comes from making a molecular-clock
assumption-which is often found to be violated. Furthermore, seeking rooted versions of trees just increases
the probability of error, since it adds another aspect of the tree which can be incorrectly analyzed.

Consequently, our objective in tree reconstruction is to obtain an accurate recovery of the topology
of the unrooted tree, and this is in general accomplished through the use of related optimization criteria.
Some criteria are based upon the sequence data, while others are based upon distances computed between
sequences in the data, but unfortunately almost all of the resultant optimization problems have been shown
to be NP-hard (and some even NP-hard to solve approximately!) [3, 36, 49]. Of the various sequence-
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based criteria used to evaluate trees, parsimony, compatibility and maximum likelihood are the most popular.
Parsimony and compatibility are both NP-hard problems, so that \solutions" are generally obtained using
heuristics (mostly hill-climbing), although exact algorithms based upon branch-and-bound approaches are
used for small enough data sets (generally speaking of up to about 17 taxa). Solutions for the \maximum
likelihood" tree are obtained through similar hill-climbing searches, but evaluating each �xed leaf-labeled
topology is more computationally expensive (in principle, not even known to be solvable in polynomial time;
however in practice, heuristics which �nd local optima exist, and these seem to scale as a square of the
number of the leaves). Consequently, maximum likelihood has not been used as frequently as parsimony for
tree reconstruction.

Distance-based approaches are also popular, and have a solid statistical foundation. While optimization-
based approaches are desirable, almost all optimization problems relevant to distance-based reconstruction
are again NP-hard (see [3, 36, 49]). Some polynomial time distance methods also have guaranteed accuracy
once the sequences are long enough, and have been shown experimentally to have good performance on small
data sets [70, 83, 102].

3 Stochastic models of evolution and performance criteria under

these models:

3.1 The models

Manymodels have been proposed to describe the evolution of biomolecular sequences. Such models depend on
the underlying phylogenetic tree and some randomness. Many models assume that the sites are independently
and identically distributed (iid.). In the most general stochastic model that we study the sequence sites evolve
iid. according to the general Markov model from the root [110]. Since the iid. condition is assumed, it is
enough to consider the evolution of a single site in the sequences. Substitutions (point mutations) at a site
are generally modeled by a probability distribution � on a set of r > 1 character states at the root � of the
tree (an arbitrary vertex or a subdividing point on an edge), and each edge e has an associated r�r stochastic
transition matrixM (e). Assigning such a stochastic transition matrix to each edge gives us a Markov chain
proceeding from each vertex to vertex. It is more common to assume a continuous time Markov model where
each edge of the tree has some positive real value associated with it corresponding to actual evolutionary
time. Along with the time variable we also assume that each edge has an associated instantaneous rate
matrix Q(e) such that the stochastic transition matrix for the edge is given by M (e) = eQ(e)t.

Many popular variants of the four-state model (i.e. r = 4) exist because of their relevance to DNA
sequence data. Di�erent models can be seen as variations of imposing constraint relationships among the
elements of the Markov transition probability matrix (or the transition rate matrix depending on discrete
or continuous time parameterization). For example, the Jukes-Cantor model has the most extreme form of
constraints in that all o�-diagonal elements of every M (e) are constrained to be identical. At least eight
di�erent forms of the four-state model is encountered in the biological biological literature [115]. The most
popular of these are: Jukes-Cantor [146], Kimura 2-parameter [145], Hasegawa-Kishino-Yano (HKY) [144],
and the Equal-input model [143]. In terms of performance, the use of a more complicated model (i.e. a
model with more parameters) does not necessarily lead to better tree estimates since the sampling variance
associated with a more complicated model may be higher at smaller data size (i.e. shorter sequences, see
[147]). The determination of an appropriate model choice for molecular data is an active �eld of research
[140-142].

Biological evolution is unlikely to follow any single Markov model from the previous discussion. Many
di�erent forms of more complex models have been proposed-usually in the form of some kind of a mixture
model across the sites of the evolving molecule. Roughly, there are two kinds of mixture models: those models
that result in iid models, and those that relax the iid assumption. The class of iid models corresponds to
cases in which the mixture is a stochastic mixture. The best way to think of this is as drawing a character
from two (or more) populations, say X and Y. In a stochastic mixture model, we draw from either the
population X or population Y based on some stochastic process (say, we ip a coin). Therefore, we do not
know whether the particular character has been sampled from population X or population Y. In this sense,
this results in an iid sampling distribution of the characters since every character has the same mixture
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distribution. One popular form of stochastic mixture is the gamma distributed rates model where the
rate parameter for the Poisson process is assumed to have a prior distribution from the gamma family of
distributions [135-139]. The non-identical distribution models arise when the model allows the characters
to be drawn from di�erent populations and either makes an a priori distinction into di�erent classes (e.g.,
di�erent codon positions within a coding DNA fragment) or a best guess classi�cation into di�erent classes.
The latter approach includes Hidden-Markov Models (HMM) where it is assumed that the population class
of the character forms a hidden state space. Then, HMMs assume that the hidden states form a Markov
chain across the sites [133] (see also [132]). More recently [131] have shown that the maximum parsimony
optimization problem solves the maximum likelihood problem under a model in which every site evolves
under its own evolutionary process. More precisely, if we have a model such that for each site i there is a set
of symmetric transition matrices Mi(e) with identical o�-diagonal elements mij � (r � 1)=r where r is the
number of states, then the leaf-labelled tree maximizing the maximum likelihood score under this model are
identical to the leaf-labelled trees optimizing the maximum parsimony score. Other parameter rich models
have also been proposed, in which the tree has a �xed set of edge weights corresponding to time, but every
site i has its own scaling of the edge weights by a rate parameter �i (G. Olsen, pers. comm.). However, it
is not clear that such parameter-rich estimates will perform satisfactorily from �nite sized data. It is also
the case, that since the number of parameters scale linearly with the number of sites, statistical consistency
cannot be guaranteed for these models. A more interesting class of complex models involve a slight relaxation
of time-homogeneity in the Markov process. For example, the covarion model in which each site is able to
change only in some portions of the tree [130, 129]. Thus, sites \turn on" and \turn o�", which is presumed
to model the gain or loss of constraints on various regions of a given protein due to changes in its structure
or function. In particular, this model (as well as HMMs) also results in a relaxation of the independence
assumption across sites.

Statisticians have addressed the performance of phylogenetic reconstruction (or estimation) methods with
respect to the accuracy of the unrooted leaf-labeled tree obtained by the method. Methods which will recover
the true tree (i.e. leaf-labeled tree) with arbitrarily high probability, given long enough sequences, are said
to be statistically consistent for that tree. A fair amount is known about the statistical consistency
(or lack thereof) of di�erent phylogenetic methods under the simplest iid. models, but the performance of
estimation methods under various mixture models is poorly studied. For example, the statistical consistency
of estimators based on mixture models has not been established, and Chang [127] showed that standard
maximum likelihood estimators (based upon pure Markov models) become inconsistent estimators under
stochastic mixture models. On a more important issue, under mixture models, it is not clear that di�erent
tree topologies are identi�able. A set of tree topologies are identi�able if under a suitable set of stochastic
evolutionary models, the joint probability distribution of the characters is disjoint for the di�erent tree
topologies except at trivial points (points where edge weights are zero). Under standard models of Markov
evolution, Chang established that di�erent tree topologies are identi�able [128]. Steel et al. [109] also
showed that if the particular mixture is known and identical for di�erent trees, then the tree topologies
are identi�able. However, under unrestricted mixture models all tree topologies can generate identical joint
probability distributions for the characters. It remains to be rigorously demonstrated whether popular
mixture models such as the gamma distributed models are identi�able, but more recent results seem to
indicate that this is indeed the case (K. Atteson, pers. comm.).

3.2 The Cavender-Felsenstein model

We now introduce the Cavender-Felsenstein model [31, 32, 52] (also called the Cavender-Farris model,
and henceforth referred to as the \CF model"). This is the simplest possible Markov model of evolution, and
under this model (as well as under more general iid. models), we can establish bounds on the convergence
rates of di�erent methods.

Let f0; 1g denote the two states. The root is a �xed leaf and the distribution � at the root is uniform. For
each edge e of a tree T we have an associated mutation probability that lies strictly between 0 and 0:5. Let
p : E(T )! (0; 0:5) denote the associated map. Each site evolves down the tree identically and independently
according to a Markov process, so that p(e) denotes the probability that the character state in site i changes
at the endpoints of the edge e.
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Thus, the CF model is an instance of the general Markov model with

M (e) =

�
1� pe pe
pe 1� pe

�
:

We now describe a nice formula which is useful for understanding the performance of methods with
respect to topology estimation. Given a leaf-labeled tree T and a subset S of the leaves, we denote the
subtree of T induced by this set S by TjS . If we suppress all nodes of degree two in TjS (by contracting
edges incident with such nodes) we obtain the tree we denote by T �jS . Given T �jS , we can de�ne mutation
probabilities on the edges of T �jS so that the probability distribution on the patterns on S is the same as the
marginal of the distribution on patterns provided by the original tree T . The mutation probability that we
assign to an edge of T �jS is just the probability p that the endpoints of the associated path in the original
tree T are in di�erent states, and p is nicely related to the mutation probabilities p1; p2; : : : ; pk of edges of
the path of the original tree:

p =
1

2

 
1�

kY
i=1

(1� 2pi)

!
(1)

Formula (1) is well-known and easy to prove by induction.
An equivalent way to view a Cavender-Farris (CF) tree (that will be useful when we analyze the per-

formance of distance-based methods) is as a pair (T; f�e : e 2 E(T )g); where �e is the expected number of
changes of a random site on edge e, and where the random variable for the number of changes on each edge
is Poisson. It is not hard to see that �e = �1=2ln(1� 2p(e)), where p(e) is the probability of an observed
change on the edge e.

The values of p(e) or �e are sometimes referred to as the edge weights; in context, which of the two is
usually clear. (But, unfortunately, not so clear in some of the literature.)

3.3 Quantifying Accuracy

While we will show that exact accuracy in the topology estimation is possible with high probability, given
long enough sequences, on �nite length sequences typically observed in real data, some error in the topology
estimation is likely to occur. Therefore, the degree of accuracy has also been quanti�ed. If T is the model
tree and T 0 is the estimation of the model tree (so that both are leaf-labeled by the same set S of taxa),
then we can compare T and T 0 to determine the degree of accuracy in the estimation.

Most typically, this comparison operates as follows:

� Let e 2 E(T ) be an internal edge of T , and let �e be the bipartition of S induced by deleting the edge
e from T . Let C(T ) = f�e : e 2 E(T )g. Similarly let C(T 0) = f�e : e 2 E(T 0)g. This set is called the
character encoding of T .

� The false positives are those bipartitions in C(T 0) � C(T ), and the false negatives are those
bipartitions in C(T )� C(T 0).

� The false negative rate is jFN j=jEI(T )j, where EI(T ) denotes the internal edges of T . The false
positive rate is jFP j=jEI(T

0)j.
Note:

� FP = FN if both T and T 0 are binary

� If T is binary, then FP � FN for all T 0.

Some authors suggest using the average of the false negative and false positive rate as a technique for
comparing trees; this is called the Robinson Foulds score. When both trees are binary, the Robinson-
Fould score is equal to the False Negative rate and the False Positive rate. However, when T is binary
but T 0 is not, then the Robinson-Foulds score can be biased in favor of unresolved trees (for example, the
Robinson-Foulds score of a star-tree is 50%, which is the same as a binary tree which gets half the edges of
the true tree). Therefore, the use of the expected Robinson-Foulds score, which is the Robinson-Foulds score
of a random binary re�nement of T 0, has also been suggested.
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4 Sequence Based Reconstruction

4.1 Parsimony

Parsimony is one of the most popular methods for phylogenetic tree inference, and yet it is a method whose
applicability to phylogeny reconstruction is seriously and sometimes violently disputed in the systematic
biology literature. In order to de�ne the parsimony method, we begin with the following de�nitions.

The Hamming distance between two sequences x and y of the same length is jfi : xi 6= yigj and is
denoted H(x; y). The parsimony length of a tree in which each node v is labeled by a sequence sv of
length k over � is the sum of the Hamming distances of sequences labeling endpoints of edges in the tree,
i.e.

P
(a;b)2E H(a; b). Given a set S of sequences, a most parsimonious tree for S is a tree leaf-labeled

by S and assigned sequences for the internal nodes, of minimum parsimony length. Thus, the parsimony
criterion is to �nd a tree of minimum length.

The motivation for the parsimony criterion is the observation that if evolution is assumed to operate
only through point mutations (for example, substitutions of one nucleotide for another) then the parsimony
length of a tree is the minimumpossible number of evolutionary events needed to obtain the set of sequences
observed at the leaves through point mutations.

Given an arbitrary set of sequences, the parsimony problem is to �nd a tree of minimum parsimony
cost (i.e. a \most parsimonious tree"). Unfortunately, this is an NP-hard problem, even when the sequences
are binary (i.e. the alphabet size is two) [37, 60, 65]. The most typical approach (and the one that is
implemented in most of the popular software packages) has been taken to attempting to �nd the maximum
parsimony tree(s) is to examine as many di�erent leaf-labeled topologies as possible, evaluating each one for
its best possible labeling of the internal nodes, and selecting the best of all the considered trees. Given a �xed
leaf-labeled tree, computing the parsimony length can be achieved in polynomial time [57,67]; consequently,
this technique is polynomial in the number of considered trees. Branch-and-bound algorithms exist which
reduce the number of trees that need to be evaluated, but in practice parsimony can be solved exactly only
for up to about 20 to 30 sequences, depending on the dataset.

When we consider parsimony from the perspective of how well it performs for reconstructing trees under
various stochastic models of evolution, we get a mixed response. It is now well known that there are very
simple model conditions under which parsimony is an inconsistent estimator (see [55,82]), while under these
conditions simple polynomial time distance methods are statistically consistent [39,40,41]. However, under
other model conditions (that may be reasonably considered closer to biologically realistic cases), even max-
imum likelihood estimation can be inconsistent [109]. It is also the case that maximum parsimony method
has an interesting kind of robustness - for the subset of models that it consistently estimates, it can consis-
tently estimate any mixture of those models. By contrast, maximum likelihood does not have this property.
Furthermore, experimental studies indicate that maximum parsimony performs well in practice [69,100] by
comparison to polynomial time distance-based methods, which are guaranteed to be statistically consistent.
For these reasons, among others, maximum parsimony remains an important problem in systematic biology.

Approximating Parsimony: The MP optimization problem can be 2-approximated in polynomial
time in a very simple way. This is a well-known result in the community.

Given the set S of sequences de�ne the weighted complete graph G(S) whose node set is bijectively
labeled by the species in S, and where w(i; j) is the Hamming distance between the ith and jth sequences.

Theorem 1 Let T be a minimum spanning tree on G(S). Then the parsimony length of T is at most twice
that of the most parsimonious tree.

Proof: Consider a most parsimonious tree, T �, and consider the result of doubling the tree T � to create
an edge-weighted graph G in which every edge in T � appears twice. This is an Eulerian graph since every
node has even degree, and consequently G has an Eulerian tour, . Create from  a smaller tour, 0, which
contains only the nodes of G(S) ordered in the way in which they appear in . Let the weight of the tour 
be denoted by w(), and de�ne it to be the sum of the weights of the edges in . Similarly de�ne w(0). It
is easy to see the following:

w() = w(G) = 2w(T �)
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since G is Eulerian, and that
w(0) � w()

since Hamming distances satisfy the triangle inequality. Now note that if we delete any single edge from 0

we create a path P such that
w(P ) � w(0):

Now consider T , a minimum spanning tree for the graph G(S). Since P is also a spanning tree, it follows
that

w(T ) � w(P ) � w(0) � w() = 2 �w(T �):
�

The main contribution of this result is an upper bound on the parsimony length of the most parsimonious
tree for a given input.

Maximum Parsimony is not guaranteed to be statistically consistent, even under very simple models.
Felsenstein showed an example of a four-taxon CF tree with two rates on the edges, in which Maximum
Parsimony is inconsistent [55], and we are beginning to establish more general conditions under which we
can show that MP is inconsistent for speci�c model trees [82]. However, in simulation studies, MP often
performs well, with respect to its false negative rates [69]. Consequently, it is possible that MP's accuracy
under biologically realistic CF trees will be fairly good.

4.2 Maximum Likelihood

The use of maximumlikelihood estimators in evolutionary trees were pioneered by J. Felsenstein, A. Edwards,
and E. Thompson. The general idea behind maximum likelihood estimators is the observation that

P (ModeljData) = P (Model and Data)=P (Data)

= P (DatajModel)P (Model)=P (Data):

In this formulation P (ModeljData) is proportional to P (DatajModel); therefore we can ad hoc justify
estimating a model by �nding the model that maximizes the conditional probability P (DatajModel), which
is also called the likelihood of the data.

One advantage of the maximum likelihood estimator is that it allows an \algorithmic" way of incorpo-
rating model-theoretic view of sequence evolution. Namely, specify the model as a stochastic model which
yields the joint probability distribution of characters. For example, let pi = pi(�; T ) be the probability
of the ith character pattern (i.e., ith way of assigning character states to the leaves of the tree) where �
denotes the various parameters of the stochastic model (e.g., edge weights) and T is the tree topology. Then
the log-likelihood of an observed data set with fi the frequency of the ith character pattern is given by
L =

P
i fi log pi(�; T )

For example, the maximum likelihood estimation (MLE) method for Cavender-Farris trees is as follows:

Given set S of sequences generated on an unknown Cavender-Farris tree, �nd a CF tree (T; f�eg) such
that Pr[Sj(T; f�eg)] is maximized.

Note that the MLE method depends upon the model; thus, the MLE method for Jukes-Cantor trees is
di�erent than the MLE method for CF trees, and both are di�erent methods than for the rates-across-sites
MLE method.

The usual MLE programs evaluate a given tree topology by numerically �nding local optima for the
edge weight parameters, and then searching through the di�erent tree topologies. Remember that although
the maximum parsimony problem (�nding the tree of optimal parsimony score) is NP-hard, computing the
parsimony score of a �xed tree is solvable in linear time, using the Fitch-Hartigan algorithm. By contrast,
the MLE optimization problem on a �xed tree can be computationally expensive, even under the simplest
models in which all the sites evolve identically and independently (iid). In this case, we have k edge weight
parameters and m edges, and the maximum likelihood estimation problem is a km dimensional numerical
optimization problem. Although some faster optimizing programs have been developed [5] the computational
problem can be signi�cant. Usual optimization algorithms converge to a local optimum in cubic-time for a
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smooth function. Popular programs such as PAUP � use heuristic procedures (in fact, the same heuristics
used to estimate the maximum parsimony tree) to get close to the MLE optima, and in practice seem to
converge in quadratic time. However, the proportionality constant can be very large due to the cost of
evaluating the likelihood function. Furthermore, there can be multiple local optima even at the branch
weight optimization step, and thus none of the currently available programs are guaranteed to �nd the
globally optimal edge-weighting, of a �xed tree.

For many problems, maximumlikelihood estimators are statistically consistent estimators. Unfortunately,
consistency properties only hold for a rather restricted class of MLEs, and evolutionary tree estimators do
not fall into this class. Therefore, the consistency of evolutionary tree MLE must be proved separately, for
each evolutionary model class. As noted above, the sampling distribution of �nite state characters follows the
multinomial distribution. The convergence of a MLE to the \true" parameters (i.e., the probability of each
character pattern) is easily established. The problem is that the probability of each character pattern is a
function of the tree topology and edge weights. Therefore, we must also establish whether the tree topologies
are identi�able in the sense previously discussed. As mentioned, we do not have a complete collection of
results for identi�ability.

4.3 Relationship between MLE and MP

Although MP is not statistically consistent under all CF trees, it nevertheless has provable statistical proper-
ties. Under a model in which the sites evolve independently but not identically, and there is no assumption of
scaling across the sites, MP=MLE [131], in the sense that if the di�erent leaf-labeled trees are rank ordered
on the basis of the MP scores and also rank ordered on the basis of the ML scores, then the rank orderings
are the same.

We now prove this.

Theorem 2 Let k binary sites evolve randomly on a tree T with leaves labeled by S, and let the ith site
evolve under its own process (i.e. if we let p(e; i) denote the probability of change of site i on edge e, then
there is no restriction on the p(e; i) other than that 0 < p(e; i) � 1=2 for all e; i). Let T 0 and T 00 be two
di�erent trees with leaves labeled by S. If T 0 is better than T 00 with respect to its maximum likelihood score,
then T 0 is better than T 00 with respect to its maximum parsimony score.

Proof: Let p(e; i) denote the probability of change for site i on edge e. For any �nite set of sequences
labeling the leaves of a tree T 0, we show how to set p(e; i) for a given tree T 0 to maximize the probability of
observing the sequences. Let L be an optimal labeling of the internal nodes of the tree T 0 with respect to
maximum parsimony. For a given edge e and site i, if site i changes on e (with respect to the labeling L)
we set p(e; i)=1/2; otherwise we set p(e; i) = 0. It can then be proven that this setting for the substitution
probabilities on the edges maximizes the probability of generating the observed sequences at the leaves, and
hence solves the maximum likelihood estimation problem for this �xed tree. Furthermore, it is easy to see
that the probability of observing the sequence data on T 0 is (1=2)length(T

0). Consequently, minimizing the
parsimony length of T 0 is identical to maximizing the likelihood of T 0. Furthermore, if T 0 is better than T 00

with respect to maximum likelihood scores, then T 0 is better than T 00 with respect to maximum parsimony
scores. Thus, MP and MLE are identical under this model. �

5 Distance-based methods

In this section we discuss some of the most promising distance-based methods that are used in systematic
biology.

5.1 Basic concepts

Given a leaf-labeled tree T with positive edge weights, we can de�ne the path distance between leaves i and
j to be the sum of the weights of the edges in the path between i and j.
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De�nition 1 A distance matrix D is additive if there exists a tree with positive edge weights such that
Dij =

P
e2Pij

w(e), where Pij denotes the path between leaves i and j in the tree, and w(e) is the weight of
edge e.

The following theorem was proved in [125].

Theorem 3 Given an additive n�n distance matrix d, there is a unique positive edge-weighted tree without
nodes of degree two, in which n nodes in the tree are labeled s1; s2; : : : ; sn, so that the path distance between
si and sj is equal to dij. Furthermore, the unique tree consistent with d is reconstructible in O(n2) time.

We will call any symmetric matrix which is zero-diagonal and positive o�-diagonal a dissimilarity
matrix. A distance method d maps n� n dissimilarity matrices to n� n additive distance matrices.

There are many distance-based methods and optimization problems related to distance-based reconstruc-
tion. Because almost all optimization problems are NP-hard ([3, 36, 49]), almost all methods are based upon
simple heuristics.

We now discuss two natural requirements we may wish to make of a distance method, which we will later
prove will ensure that the method is a consistent estimator for inferring binary model trees. These two prop-
erties are combinatorial consistency and local continuity. We will say that a method M is combinatorially
consistent if M (D) = D whenever D is additive. This property is true of just about all distance methods
that are in use today, except those that seek to reconstruct ultrametric trees (i.e. rooted trees in which the
distance from the root to any leaf is the same). This property is also automatically true of any method which
solves or approximates (with a performance guarantee) an optimization problem of the form \given distance
matrix d, �nd a nearest additive matrix D", where by \nearest" we permit any metric between distance
matrices to be used. Furthermore, if we de�ne a metric on distance matrices, we may naturally de�ne con-
tinuity with respect to that metric. For example, the L1 metric is de�ned by L1(d; d0) = maxij jdij � d0ijj.
A distance method M is then continuous at d (with respect to the L1 metric) if for all � > 0 there is a
� > 0 such that L1(d; d0) < � implies that L1(M (d);M (d0)) < �.

We will say that a distance method is reasonable if it is both combinatorially consistent and continuous
on a neighborhood around every additive distance matrices corresponding to positively edge-weighted binary
trees. Almost all methods used to reconstruct trees from distances are reasonable. The importance of being
\reasonable" will be shown in Section 4.5, in which we will prove that any method which is reasonable" is
guaranteed to be consistent for estimating binary trees.

Many of the methods used in practice are based upon agglomerative clustering. Agglomerative clustering
is a basic technique which constructs a tree by successively deciding which pair of leaves should be siblings,
thus reducing the size of the input in each step. The particular technique by which the siblinghood decision
is made, and the way in which the distance matrix is then modi�ed, distinguishes the di�erent clustering
methods. Some of the most popular methods used in practice, such as the O(n2) Neighbor Joining method
(popularized by Saitou and Nei in [103]) and the O(n4) Fitch-Margoliash method [59], are based upon this
technique. All of these methods, except those that reconstruct ultrametric trees, are \reasonable" and hence
provably consistent estimators for binary trees.

Ultrametric trees are rooted and edge-weighted so that the distance from the root to every leaf is the
same. Consequently, given an additive but not ultrametric distance matrix D, methods which reconstruct
ultrametric trees will modify D, sometimes even changing its topology!

The reconstruction of ultrametric trees used to be popular among biologists when the \molecular-clock"
hypothesis was accepted. This hypothesis asserts that mutations occur in a more-or-less clocklike fashion,
so that di�erences between sequences should be proportional to the evolutionary time between the two
sequences (i.e. to the time back to their most recent common ancestor). This is also expressed by saying
that DNA sequences evolve at a constant rate across di�erent lineages. The molecular-clock hypothesis has
however been discredited, and there is mounting evidence that di�erent lineages can evolve at unboundedly
di�erent rates, and that even mitochondrial DNA does not evolve at anything close to a constant rate. (See
[117] for the original disproof of the molecular clock hypothesis, and [25, 63, 88, 89, 106] for other such
results.)

Many new distance-based methods have been introduced, such as BIONJ [62], Quartet Puzzling [114],
the Short Quartet Method [39, 40, 41] and Agarwala's 3-approximation [3] and its variant, the Double-Pivot
[33]. However, these methods are not yet in use by the systematic biology community, and there has not yet
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been enough experimental performance analysis of these methods for their advantages and disadvantages on
realistic data sets to be understood.

5.2 Statistical basis of distance-based methods

The idea behind distance-based methods is to compute distances between sequences so that these pairwise
distances reect the actual number of point mutations that occurred on the path between the leaves rep-
resenting the two sequences. If this can be done so that the actual computed distances exactly equal the
number of changes on the paths, then these distances are additive and hence can be used to reconstruct the
evolutionary tree. Furthermore, as we have shown, reconstructing the underlying tree from additive matrices
is easy to do in polynomial time.

There are two main hurdles in this basic approach. The �rst is that the distances must be computed
appropriately, so that these distances will be proportional to the path distances in the true tree. Hamming
distances clearly fail this test because of the \multiple-hits" phenomenon where two sequences are identical
on a particular site, but that site has changed state on the path between the two sequences. It turns out that
computing additive distances from �nite length sequences is not really possible to do, but it is nevertheless
possible to de�ne distances so that as the sequence length gets longer, the computed distances more closely
approximate additive distances.

Corrected distance transformations were invented for this purpose. A corrected distance transfor-
mation simultaneously:

� represents the model tree (i.e. leaf-labeled tree with information about the evolutionary process gov-
erning each edge) as an edge-weighted tree, and

� de�nes distances between sequences generated on the tree, so that the following holds: as the sequence
length increases, the matrix of observed distances converges to the additive distance de�ned by the edge
weighted tree.

Using such corrected distance transformations then ensures that a distance method can be consistent.
Corrected distance transformations exist for the CF model and for the general Markov model. We now
describe the corrected distance transformation for the CF model, and why it makes distance methods con-
sistent.

Given a CF tree T and sequences of length k generated at the leaves of T , let H(i; j) denote the Hamming
distance of sequences i and j and hij = H(i; j)=k denote the dissimilarity score of sequences i and j. The
corrected distance between i and j is denoted by dij = �1

2 log(1� 2hij) and the model probability of change
of character state between the sequences i and j is denoted by Eij (i.e. Eij denotes the expected value
of hij). We let Dij = �1

2 log(1 � Eij) denote the theoretical distance between i and j, computed with Eij

instead of hij. If we assign to any edge e a positive weight w(e) = �1
2 log(1 � 2pe), then it follows from

Equation (1) above that Dij is exactly the sum of the weights along P (i; j).
What we have shown is that a combinatorially consistent method applied to distances computed for

in�nite length sequences will with probability 1 reconstruct the correct topology. However, we never have
in�nite length sequences, so that we need to discuss whether the method attains the correct topology on
some �nite length sequences. For this to be true, we will need the continuity property. However, we will only
be able to �nish the proof after we establish conditions under which two additive matrices can be guaranteed
to de�ne the same topology. The next few sections will develop these results.

5.3 Buneman's Four-Point Condition

The following theorem of Buneman [27], called the Four Point Condition, provides a characterization of
additive distance matrices which is of interest in its own right, and has several consequences for algorithm
design. Before we give the four-point condition, we provide the following de�nition.

De�nition 2 Let ijjkl denote the tree on leaves i; j; k; l in which the pair i; j is separated from the pair k; l
by a path.

The dyadic closure of a set X is de�ned by two rules.
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Lemma 1 (Four Point Condition [27]) A matrix D is additive if and only if for all i; j; k; l (not necessarily
distinct), the maximum of Dij+Dkl; Dik+Djl; Dil+Djk is not unique. The edge weighted tree (with positive
weights on internal edges and non-negative weights on leaf edges) representing the additive distance matrix
is unique among the trees without vertices of degree two.

Proof: We only prove one direction, because it is easy and also illuminative. Suppose that D is additive
so that there is a tree T with positive edge weights on the internal edges and non-negative edge weights on
the edges incident with leaves, so that Dij equals the path distance in T between i and j. Now consider a
quartet i; j; k; l. These four nodes induce a subtree of T which is either a star or a resolved binary tree. It is
easy to see that the four nodes induce a star if and only if the three pairwise sums are identical. In the case
where the four nodes induce a binary tree in which i and j are separated from k and l by a path of positive
weight, the smallest of the three pairwise sums will be Dij +Dkl, while the other two pairwise sums will be
identical. �

The sketch of the proof we have just described actually indicates that Dij+Dkl < Dik+Djl = Dil+Djk

if and only if the topology of the subtree of T induced by i; j; k; l is ijjkl. Consequently, if the distance
matrix is additive, then the topology of the model tree can be obtained by simply inferring the topology
of every quartet. It is then straightforward to construct the tree topology, since siblinghood of leaves (and
subsequently of subtrees) can be easily inferred, and once the tree topology is reconstructed, the edge-weights
realizing the distance method can also be obtained by solving linear equations. This is just one of many
polynomial time methods for reconstructing the unique positively edge-weighted tree realizing the distance
matrix (though this particular method uses much more time than the other methods!).

However, distances calculated and appropriately corrected from �nite length sequences generated on a
model tree are not actually additive, even though these distances do (with probability 1) converge to the
additive distance de�ning the model tree. Consequently, the real issue is whether we can infer the model
tree from distances that are close to but not identical to the additive matrix de�ning the model tree.

5.4 Topology Invariant Neighborhoods and Consistency

Since distance methods must be applied to nonadditive distance matrices, it is relevant to consider whether
a method can return the topology of the model tree even when the distances are not additive. In order
to answer this question, we consider the question of when two di�erent additive matrices de�ne the same
topology. All of the results in this section are from [39, 40, 41].

Lemma 2 Two additive distance matrices D and D0 de�ne the same topology if and only if for every quartet
i; j; k; l, Dij +Dkl is the minimum of the three pairwise sums if and only if D0

ij +D0
kl is the minimum of the

corresponding three pairwise sums.

Proof: First, note that the topology of a tree is de�ned by the topology the tree induces on every quartet
of leaves in the tree. Given this observation, we note that Buneman's four-point condition shows that the
topology of any quartet i; j; k; l can be inferred by examining the three pairwise sums, Dij + Dkl; Dik +
Djl; Dil+Djk. The minimumof these three pairwise sums is Dij+Dkl if and only if the topology on i; j; k; l
in the tree is ijjkl. Therefore, two additive distance matrices de�ne the same topology if and only if they
impose the same ordering on such pairwise sums. �

A surprising consequence of this theorem is that there is a positive neighborhood around each additive
distance matrix de�ning a binary tree (i.e. all nodes of degree 3), on which all additive distance matrices
de�ne the same topology.

Lemma 3 Let D be an additive distance matrix de�ning an edge-weighted binary tree T , and let x be the
weight of the smallest edge in T . Let D0 be another additive distance matrix de�ning a (not necessarily
binary) edge-weighted tree T 0. If L1(D;D0) = maxijjDij �D0

ij j < x=2 then the topologies of T and T 0 are
identical.

Proof: It su�ces to note that if Dij +Dkl is the minimum of the three pairwise sums, then it is less than
the other two sums by at least 2x. If L1(D;D0) < x=2, then D0

ij +D0
kl is also less than both of D0

ik +D0
jl

and D0
il +D0

jk. Consequently, D and D0 de�ne the same topology (although with di�erent edge weights). �
An immediate consequence of this theorem is the following:
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Theorem 4 All combinatorially consistent distance methods which are continuous at additive distance ma-
trices de�ning binary trees are consistent methods for inferring topologies of binary model trees T .

Proof: The proof is straightforward. Suppose that T is a binary model tree, x is its smallest edge weight,
and M is a method which is both combinatorially consistent and continuous at additive matrices for binary
trees (i.e. \reasonable"). Since M is continuous, then there is some � such that if d satis�es L1(d;D) � �,
then L1(M (D);M (d)) < x=2. SinceM maps distance matrices to additive distances, under these conditions
M (d) is guaranteed to have the same topology as M (D). Since M is combinatorially consistent, M (D) = D.
Consequently M (d) is an additive matrix which de�nes the topology of the model tree T . �

It is worth noting that all of the standard distance-based methods (with the exception of those that
explicitly seek to reconstruct ultrametric trees) are continuous at binary trees, and combinatorially consistent,
and hence are consistent methods for inferring binary evolutionary trees, but little is understood about the
convergence rate of these methods.

However, the proof of this theorem establishes a mechanism by which the convergence rate of di�erent
methods can be compared: For each method M and for each binary model tree T and the additive matrixD
de�ned by T , there is some positive � such that given a distance matrix d0 2 N (D; �) = fd : L1(d;D) < �g,
M (d0) is guaranteed to be an additive distance matrix having the same topology as T . It then follows that
the larger the maximum � for which this is true, the easier it is for a method to be guaranteed to obtain an
accurate topology.

5.5 Ultrametric Tree Reconstruction

If distances computed on the basis of di�erences between biomolecular sequences are proportional to time
since the sequences split o� from a common ancestor (the \molecular clock" hypothesis), then a special kind
of edge-weighted tree, called an \ultrametric tree", is an appropriate model of evolution. Ultrametric trees
are rooted edge-weighted trees in which the distances from the root to any two leaves are the same.

However, as we have discussed earlier, the molecular clock hypothesis is now generally discredited, and
the reconstruction of ultrametric trees is no longer generally considered relevant to biomolecular evolutionary
studies.

However, there are two reasons to discuss ultrametric tree reconstruction: �rst, there are some very nice
algorithms which have been developed for obtaining optimal solutions to problems related to ultrametric
tree reconstruction, and second, these algorithms have been shown to be useful in approximating the nearest
�tting additive tree. We describe the algorithms for ultrametric tree reconstruction in this section, and show
in the next section how they can be used to approximate additive trees.

We have already noted that optimization problems in distance-based reconstruction are typically NP-
hard. When the desired tree is constrained to be ultrametric, it is however possible that the problem's
complexity could become tractable, but in almost all cases, optimization problems for reconstructing ultra-
metric trees are still NP-hard [3, 49]. One notable exception is the problem of �nding the nearest ultrametric
distance matrix (i.e. distance matrix �tting an ultrametric tree) to a given distance matrix, with respect to
the L1-criterion.

The �rst result of this type is due to Gower and Ross [64], who proved the following:

Theorem 5 Given distance matrix d, there is a unique ultrametric distance matrix D satisfying

� 1. D is dominated by d (i.e. D[ij] � d[ij] for all i; j ), and

� 2. D dominates all other ultrametric distance matrices which are dominated by d (i.e. if D0 is ultra-
metric and D0[ij] � d[ij] for all i; j, then D0[ij] � D[ij]).

Their proof was constructive: given d:

� Step 1: weight the complete graph on 1; 2; : : :; n by the matrix d; i.e. w(i; j) = dij,

� Step 2: construct a minimum spanning tree T on Kn

� Step 3: de�ne the ultrametric matrix U by letting U [ij] be the maximum weight on the edge in T
between i and j.
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This algorithm produces an ultrametric tree which is called the subdominant ultrametric of the matrix d.
Surprisingly, the same tree can be constructed in a greedy agglomerative fashion, through the \Single-

linkage algorithm," which takes as input a distance matrix d and computes a rooted tree whose edges can
be weighted appropriately to obtain the subdominant ultrametric of d.

5.6 Single-linkage algorithm:

� 1. Begin with all taxa (leaves) in their own classes, and set the distance between two classes x; y to be
d(x; y).

� 2. While there is more than one class, DO:

{ Choose the classes C1 and C2 minimizing the quantity d(C1; C2).

{ Join the subtrees for C1 and C2 into one rooted subtree, by making their roots children of the
same root.

{ Create the class C = C1 [ C2, and de�ne d(C;C0) = min(d(C1; C
0); d(C2; C

0)) for all classes
C0 6= C1; C2.

{ If C = S then return tree, else delete C1 and C2.

This algorithm [107] can be easily modi�ed to assign weights to the edges of the tree so as to de�ne an
ultrametric tree, and it is easy to see (see [72] for the �rst such statement of this observation) that the
topology this method reconstructs is the same as the topology obtained by Gower and Ross's algorithm for
the subdominant ultrametric.

These algorithms were rediscovered in a later work by Farach, Kannan, and Warnow [48] in the context
of a more general problem:

5.7 Matrix sandwich problem:

Given two distance matrices Ml and Mh which represent lower and upper bounds respectively, determine if
there is an ultrametric matrix U satisfying Ml[ij] � U [ij] �Mh[ij].

This is a general class of problems since the matrix sought can be less constrained (i.e. we may seek an
additive tree only, or an ultrametric satisfying additional constraints). The following then is obvious:

Theorem 6 Let Ml and Mh be two n � n distance matrices. The following are equivalent:

� 1. There is an ultrametric matrix U such that U 2 [Ml;Mh], and

� 2. It is possible to weight the edges of the tree obtained by the Gower-Ross algorithm applied to distance
matrix Mh so as to obtain an ultrametric matrix U 0 2 [Ml;Mh].

This theorem implies that a simple algorithm can determine whether there is an ultrametric matrix in an
arbitrary sandwich, and the algorithm uses only polynomial time. This formulation has some nice properties,
since in general it means that many di�erent optimization problems related to obtaining nearest ultrametric
trees can be solved in polynomial time, for various de�nitions of \nearest."

5.8 Approximation algorithms for nearest trees

Various approximation algorithms for obtaining \nearest" additive trees to a given distance matrix have been
developed, all of which are based upon a fundamental observation relating ultrametric trees and additive
trees. To explain this relationship we �rst de�ne what a centroid metric is.

A centroid metric is an additive metric which can be realized by edge-weighting a star topology (i.e.
a tree with exactly one non-leaf node).

The critical observation relating centroid metrics, additive metrics, and ultrametrics, was �rst observed
by Farris, and communicated to Carroll who published it in 1976 in [29]:
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Theorem 7 Let D be an additive matrix, and let X be a centroid matrix. Then D + X is an ultrametric
matrix.

This suggests a general strategy for reconstructing nearby additive metrics to given distance metrics,
which we now describe.
The basic idea: If d is a matrix, Dopt is the nearest additive metric to d (under some optimization criterion).
Let X be a centroid metric. Then U� = Dopt +X is an ultrametric matrix, and since Dopt is near to d, it
may be that U� is close to d+X. If we could get from d+X to U� we could then easily obtain Dopt from
U� by subtracting X. Hence, the problem in some sense \reduces" to �nding a nearest ultrametric to d+X,
for some suitably selected centroid metric X.

To summarize, the observation that an additive metric decomposes into the sum of a centroid (which can
be arbitrarily selected) and an ultrametric suggests a general algorithmic strategy:

5.9 General algorithmic strategy for obtaining nearby additive metrics:

� 1. Given distance matrix d, compute a centroid metric X, and compute distance metric d0 = d+X.

� 2. Use some method to �nd an ultrametric U which is close to d0.

� 3. Compute the additive metric D = U � X, and reconstruct the edge-weighted tree T realizing D.
Return T .

This basic approach was possibly �rst discovered by Blanken et al. in 1982 [20], also used by Brossier
in 1984 [24], and again used by Agarwala et al. in 1996 [3]. The major contribution of the Agarwala et al.
paper was the observation that if the basic method were implemented by using the Single-Linkage algorithm
and the topology obtained were correctly weighted, then the resultant additive matrix would be guaranteed
to be no more than three times as far from the input matrix than the nearest additive matrix, with respect
to the L1 metric. In other words, Agarwala and her colleagues showed that the basic approach could be
implemented to produce a 3-approximation for the nearest tree, with respect to the L1-metric.

5.10 Reconstruction based upon combining subtrees

5.11 Introduction

One general technique that can be used to reconstruct an evolutionary tree is to reconstruct all subtrees of
a given size, and then combine these subtrees into one tree.

An unrooted leaf-labeled tree can be de�ned by the topology it induces on the quartets of leaves in the
tree. Thus, one approach to reconstructing evolutionary trees is to determine (using some technique) the
topology on every quartet of leaves, and then combine these quartets if possible into one tree consistent with
the entire set. It is easy to see that if all the quartets are consistent, it is easy to reconstruct the (unique) tree
consistent with the constraints in polynomial time. However, quartet topologies are not always consistent,
so that each quartet-based method must also specify a means for resolving inconsistencies or else permit the
output of inconsistent to be returned on those inputs for which some topology is inaccurately reconstructed.

In essence, then, a quartet method takes as input a set Q of topologies on quartets, and determines a
tree from this set. One problem with quartet-based approaches is that some quartets are simply harder
to estimate than others (see [70] for a study of quartet estimation). Thus, one quartet-based approach
is to take the quartets one has con�dence in, and use those only to reconstruct the tree. Unfortunately,
consistency of a set of quartets with a tree is in general NP-complete [111] (although the case where the
set contains topologies for all quartets is solvable in polynomial time). Thus, quartet methods generally use
all the possible quartets and speci�cally identify a heuristic step for handling inconsistencies, but have the
exibility to allow any method whatsoever for reconstructing trees on quartets.

These methods are historically popular though they have been replaced by the faster and possibly more
powerful methods (such as neighbor-joining) introduced in recent years. Recently however there have been
new quartet-based methods introduced which have very nice properties and interesting performance in ex-
perimental studies. Before we discuss the more sophisticated quartet based methods, we begin with the
simplest of all possible methods, which we call the Naive Quartet Method.
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5.11.1 The Naive Quartet Method

Consider the following quartet based method. For every set i; j; k; l, select the topology ijjkl if and only if
Dij + Dkl < min(Dik + Djl; Dil + Djk). If all the quartet topologies can be simultaneously realized in a
single tree, then that tree can be reconstructed in polynomial time (simply determine siblinghood of pairs
of leaves, and then of subtrees, and hence reconstruct the tree \from the outside-in").

The problem with this approach is that it may happen that one of the 
(n4) quartets may be incorrectly
inferred, especially if the tree contains widely separated pairs of taxa, or very short edges. Nevertheless, this
method is combinatorially consistent (i.e. it satis�es M (D) = D, when D is additive) and continuous at
binary trees, and hence it is a consistent method for reconstructing binary evolutionary trees.

Most (but not all) quartet-based methods begin in essentially the same way as the Naive Method, in that
they infer the topology of every quartet (using some method, typically a distance-based reconstruction, but
sometimes other techniques are used) and then reconstruct the tree from the set of quartets. Since typically
some quartets will be incorrectly estimated, most quartet-based methods must provide a mechanism for
handling incompatible sets of quartets.

5.11.2 The Buneman Tree

One of the classical quartet-based approaches is the Buneman tree, suggested by Buneman in [27], as follows:
The topology of every quartet is inferred using the same basic approach as the Naive Method. This

de�nes a set of quartet topologies, Q. If all the topologies in Q are simultaneously realizable with one tree,
we return that tree. Otherwise, we seek a tree in which \every edge is supported by Q". We now de�ne
what this means.

Consider a bipartition of the leaves S into two sets A and B de�ned by an edge of a tree T . We will say
that this bipartition is completely supported by a set Q of quartet topologies if for every fa; a0g � A and
fb; b0g � B, the topology on a; a0; b; b0 de�ned by Q separates a; a0 from b; b0.

Buneman's approach [27] was to reconstruct the tree which contained every bipartition that was sup-
ported by Q. Although there are exponentially many possible bipartitions, the set of bipartitions that
are completely supported by a set of topologies for all of the possible quartets is compatible, and hence
de�nes a unique tree (see [18]). Furthermore, reconstructing the unique tree containing all the com-
pletely supported bipartitions can be accomplished in polynomial time; an O(n5) algorithm to reconstruct
the Buneman Tree has been implemented in the SplitsTree phylogenetic software package (available at
ftp://ftp.uni-bielefeld.de/pub/math/splits). A faster O(n4) algorithm has also been obtained by
Berry and Gascuel [18].

5.11.3 Split Decomposition

An interesting quartet-based method was developed by Bandelt and Dress, which has a di�erent objective
than other methods. This method is the split decomposition method [12, 13] to construct networks of
relationships. The basic idea in this method is the observation that observed sequence or distance data
may not support a single tree, but rather may support a set of trees. Thus, for example, Buneman showed
that additive distance matrices D are characterized as having the four-point condition: for all i; j; k; l, the
maximum and median of Dij+Dkl; Dik+Djl; Dil+Djk are the same; consequently the smallest of the three
pairwise sums indicates the topology. But what happens if the distance matrix is not additive? Perhaps
the three numbers are distinct, and the smallest is so close to the median that it is hard to determine
with any con�dence the actual topology of the quartet? In that case, the most accurate representation
of the topology on the quartet i; j; k; l is that it is either of one of two trees, but not the third. Bandelt
and Dress showed that it was possible to e�ectively represent such ambiguities using \networks" (which
are really just graphs), and they developed software for representing these networks as planar graphs so
that identifying sets of parallel lines would yield the di�erent trees that are consistent with the data. This
method and its variants has been implemented and constitutes the SplitsTree phylogenetic software package
at ftp://ftp.uni-bielefeld.de/pub/math/splits.
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6 Convergence proof techniques

As we have seen, there are many methods for reconstructing trees. In this section we will describe the
techniques used to predict their performance under di�erent model trees in the Cavender-Farris model of
evolution. Until recently, very little was known about performance of estimators under the CF model,
except whether each converged or did not converge to the true tree under these models, as the sequence
length increases. However, in the last few years, we now have established very general techniques for proving
convergence and bounding the convergence rates of distance-based methods.

6.1 Techniques for proving convergence to CF trees

We begin with some basic results, whose proofs we omit.

Lemma 4 Let (T; f�eg) be a CF tree, with 0 < f � �e � g. De�ne

L(q)1 (d; �) = maxfjdi;j � �i;jj : minf�i;j; di;jg < qg:
For every �; � > 0, there exists a constant C (depending upon � and �) such that if k � C logneO(q),

then Pr[L
(q)
1 (dk; �) < �] > 1� �:

This suggests that the estimates of small distances converge faster to their true values than the estimates
of large distances. It may also suggest that the error in the estimations of small distances may be smaller
then the error in the estimation of a large distance.

6.1.1 General Technique for Proving Convergence of distance methods

The technique we use is the following:

Let (T; f�eg) be a CF tree with 0 < f � �e � g for all edges e. Let M be a �xed phylogenetic method.

� Show 9� > 0 so that if d satis�es L1(d; �) = maxi;j jdi;j � �i;jj < �, then M (d) = T .

Then Lemma 4 implies there exists a constant C dependent upon � and � such that if k � C logneO(max �ij)

then Pr[M (dk) = T ] � 1 � �: Hence M converges. However, this does not prove fast convergence. Then
max�i;j = O(g � diam(T )), where diam(T ) is the number of edges in the longest path in the tree. Erd�os,
Steel, Szekely, and Warnow then showed:

� diam(T ) � n� 1, and

� diam(T ) = 
(
p
n) for random trees under the uniform distribution.

This technique has been used to prove convergence, although not fast convergence, for several distance
methods:

1. The Buneman and Naive Quartet Methods are accurate when � = f=2 [39,40,41].

2. The Agarwala et al. (SODA '96) algorithm is accurate when � = x=8 [48].

3. The Neighbor-Joining Method is accurate when � = x=2 [11].

The largest � can be is f=2, and generally � is of the form f=p for some constant p � 2. Hence, the
convergence rate has a dependence upon f . We present this analysis technique on the simplest of the
methods, the Naive Quartet Method (see Section 5.11.1).

Lemma 5 Let M be an additive matrix associated to tree T with edge-weighting w and f = minw(e). If
d is an n � n dissimilarity matrix and L1(d;M ) < f=2, then the Four Point Method is correct on every
quartet, and hence the Naive Quartet Method applied to d reconstructs T .

Proof: By the four-point condition, when L1(d;M ) < f=2, then for all i; j; k; l, both d and M induce the
same ordering on the three pairwise sums. The proof then follows since a tree is de�ned by its induced
quartet subtrees. � Thus, the Naive Quartet Method is a statistically consistent method for CF tree
reconstruction, by Lemma 4.
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6.2 Extension to other models

These results also extend to other models, for which there is a statistically consistent technique for estimating
leaf-to-leaf distances. For example, consider the rates-across sites assumption. Under these models, if the
distribution of rates across sites is known, then the same positive results hold, as these depend only upon
the ability to obtain arbitrarily good estimates of the path distances in the tree with high probability, given
long enough sequences. Thus, models with gamma-distributed rates across sites, where the shape parameter
is given, are just as easily inferred as the Jukes-Cantor model trees.

For some other models of evolution, it is also possible to estimate leaf-to-leaf distances arbitrarily well,
given long enough sequences, and so the same results can be established for a larger range of models.
However, it is not the case that these distance estimations exist for every model. See [115] for a discussion
of the existence of such distance estimation techniques under a wider class of evolutionary models.

7 Fast Converging Methods

7.1 Fast Convergence

We now describe the concept of \fast convergence" under the CF reconstruction problem. Although our
description will be based upon the assumption that the data are generated by a �xed but unknown CF tree,
similar statements can be made about the primary objective of tree reconstruction under other models.

Given a set S of sequences that have been generated by an unknown CF tree (T; f�eg), and � > 0, recover
the unrooted leaf-labeled tree T with probability at least 1� �

� in time that is polynomial in n (the number of leaves) and k (the length of the sequences),

� from sequences of lengths that are polynomial in n (for �xed f = mine �e and g = maxe �e); and

� without knowing the f�eg.

A method which converges from polynomial length sequences is said to be fast converging.
Note that the input to the method does not include any information about the values of the �e, other

than that they are positive; nor any constraints about the tree T other than that it is binary. At �rst glance
recovering T without additional knowledge about the parameters of T might seem impossible to do with any
degree of con�dence; however, there are only a �nite number of di�erent unrooted tree topologies, and hence
there is a potential to be able to recover this tree exactly, with probability going to 1 as the sequence length
increases. By contrast, exactly recovering the values �e as well cannot be established with high probability
except from in�nite length sequences, unless the set of permitted �e is discretized.

As we will show, it is possible, even using simple polynomial time methods, to recover all CF trees with
arbitrarily high probability, given long enough sequences. Recovering them from polynomial length sequences
is harder, and requires more complex algorithms, but here too polynomial time methods can be developed.

7.2 Introduction

The challenge we have is how to prove (or obtain) fast convergence. The previous technique cannot prove fast
convergence, because it relies upon all distance estimates being su�ciently accurate, and the convergence
rate for this is likely to be tight. However, this does not mean that the particular methods are not fast
converging! They may be, but this technique will not establish it. To prove fast convergence, we may need
to show that a di�erent condition su�ces to guarantee accuracy for a method, and that this condition will
hold with high probability from short sequences.

Consider Lemma 4: Estimates of small distances converge faster to their true values than estimates of
large distances. This suggests that if we recover the tree without using the large entries in the distance
matrix, then we may be able to de�ne a fast converging method. As we will show, the fast converging
methods that have been developed exploit this observation.
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7.2.1 Short Quartets

We begin with the basics underlying the �rst fast converging method, the Dyadic Closure Method; see
[39,40,41] for this exposition.

De�nition 3 Let D be the additive matrix for the tree T . The D-width of a quartet i; j; k; l is
maxfDi;j; Di;k; Di;l; Dj;k; Dj;l; Dk;lg: A short quartet around an edge e is a quartet with leaves in each
of the four subtrees around that edge of minimum D-width. The set of all quartets that could have been
selected in this manner is the set of short quartets of a tree, and the set of trees induced in T by the short
quartets is denoted SQT(T). D-width(T) is the maximum D-width of any short quartet in T . Given d, a
dissimilarity matrix, d-width(T) is the maximum d-width of any short quartet in T .

We now show that SQT (T ) de�nes T . The proof is constructive, First note that the set Q(T ) of four-leaf
induced subtrees of any tree T de�nes the tree T . We now describe an algorithm (the Dyadic Closure
Method) which produces Q(T ) when applied to the set SQT (T ).

Dyadic Closure

� Input: Set X of trees on four-leaves

� Output: cl(X), the dyadic closure of X

Recall the de�nition of the four-taxon tree ijjkl. Then the dyadic closure of the set X is de�ned on the
basis of two rules, which we now describe.

� Rule 1: Given two quartet trees ijjkl and jkjlm, infer the quartet trees ijjkm; ijjlm and ikjlm.

� Rule 2: Given two quartet trees ijjkl and ijjkm, infer the quartet tree ijjlm.

Given these two rules, the dyadic closure cl(X) of a set X is the minimal set of quartet trees which contains
X and is closed under Rule 1 and Rule 2. It follows that cl(X) is unique and can be reconstructed in O(n5)
time.

Theorem 8 Let T be a �xed edge-weighted tree, and let SQT (T ) denote the set of trees induced by the short
quartets of T . Let Q(T ) denote the set of four-leaf trees in T . If SQT (T ) � X � Q(T ) then cl(X) = Q(T ).

Proof: The proof is by induction on the number of leaves in T . If T has four leaves, the statement is true.
Now assume the statement is true for all trees on n� 1 leaves. Let a and b be a sibling pair of leaves, and
let a be the nearest of the two leaves to their common parent. (If they are equidistant from their common
parent, then select a at random.) It is easy to verify that SQT (T � fbg) � SQT (T ). Also, a and b are in
some short quartet together, and hence there exists abjcd 2 SQT (T ). Therefore,

cl[cl(SQT (T � fbg)) [ fabjcdg]� cl(X):

By induction, cl(SQT (T � fbg)) = Q(T � fbg). The proof then follows from the observation that cl(Q(T �
fbg) [ fabjcdg) = Q(T ). �

Corollary 1 T can be reconstructed from SQT (T ) in polynomial time.

7.2.2 The Dyadic Closure Method

We can now de�ne the Dyadic Closure Method. The input to the Dyadic Closure Method is a dissimilarity
matrix d, and the output is either a tree or Fail.
Algorithm
Binary search over the q 2 dij:

1. Use the Four-Point Method to compute a tree for each set of four leaves with d-width bounded by q. Let
Aq denote the set of trees (computed using the Four-Point Method) on each quartet of d�width � q.
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2. Compute cl(Aq), the Dyadic Closure of Aq . There are three cases to consider:

� If cl(Aq) contains exactly one tree on every quartet, then return T such that Q(T ) = cl(Aq)
(polytime and unique tree T exists).

� If cl(Aq) does not contain a tree on every quartet, increase q.

� If cl(Aq) contains two trees on some quartet, then decrease q.

If all q fail to return a tree, then return fail.

Theorem 9 Let d be a �xed n�n dissimilarity matrix, and let f�i;jg be an n�n additive matrix associated
to the tree T with edge-weighting �e. Let f = min�e. Then the Dyadic Closure Method returns T if

L
(d�width(T ))
1 (d; �) < f=2:

Proof: Let q0 = d� width(T ). If L
(q0)
1 (d; �) < f=2, then SQT (T ) � Aq0 � Q(T ): By Theorem 7, cl(Aq) =

Q(T ). Also, it is easy to see that when X � Y then cl(X) � cl(Y ). Consequently, the set [0;maxdij] can
be divided into three intervals:

� An initial interval, A, in which cl(Aq) �6= Q(T ) for all q 2 A.

� A middle interval,B, in which cl(Aq) = Q(T ) for all q 2 B, and

� A �nal interval, C, in which Q(T ) �6= cl(Aq) for all q 2 C.

By assumption q0 2 B, so that B 6= ;. Therefore, the binary search is guaranteed to examine some entry
q 2 B, and hence to construct the tree T . �

Theorem 10 The Dyadic Closure Method is O(n5 logn) time and fast-converging for CF tree reconstruction.
Furthermore, polylogarithmic length sequences su�ce for accuracy with high probability for random CF trees.

Proof: We provide a brief sketch. Let (T; f�eg) be a Cavender-Farris tree on n leaves, 0 < f � �e � g, and
� > 0 be given.

Establishing the running time is easy. To prove that the Dyadic Closure Method is fast converging,

let q = �-width(T)+f=2: We show that Dyadic Closure(d) = T if L
(q)
1 (d; �) < f=2: We then show that

q = O(g � logn) for all trees, so that by Lemma 4, the Dyadic Closure Method is fast converging. Finally, we
show that random trees have q = O(g � log logn), so that by Lemma 4, the Dyadic Closure Method converges
from polylogarithmic length sequences on random CF trees. �

7.3 General technique for proving fast convergence

Given a method M and a CF tree, (T; f�eg), with 0 < f � �e � g for all edges e, we wish to show that M
obtains the tree T with probability at least 1� � if the sequence length k is as large as a polynomial in n.
In the previous section we proved that the Dyadic Closure Method is fast converging. In this section, we
generalize the technique used to prove the Dyadic Closure Method is fast converging.

� Show 9� > 0 and q = O(g logn) so that if a dissimilarity matrix d satis�es L
(q)
1 (d; �) < �; then

M (d) = T .

� Lemma 4 proves M is fast converging.

7.4 The Fast Converging Methods

There are now four methods known to be fast converging and whose proofs use this technique. These methods
are:

1. The Dyadic Closure Method [40] is O(n5 logn) time

2. The Witness-Antiwitness Method [41] is O(n4 logn) time, but on most trees will be faster
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3. The Harmonic Greedy Triplets method [149] is O(n3) time

4. The Disk-Covering Method [148] is a general phylogenetic method booster, so that it is used with other
phylogenetic methods. It is not polynomial time, but performs very well in practice. The DCM-
Buneman and DCM-Naive Quartet methods are both fast converging, although not polynomial time.

7.5 The Disk-Covering Method

All four of the fast converging methods have the same theoretical performance guarantees, but the fourth of
these methods has a di�erent avor, and is of interest in its own right because it can be used for a variety
of purposes. This technique [148] is a meta-method for phylogenetic tree reconstruction.
Given �xed phylogenetic method, M , which will be called the \base method".

� Phase I: For every q 2 fdijg, DO:
1. compute threshold graph dw = (S;Eq), where (i; j) 2 Eq i� dij � q

2. let Gq be a triangulation of dq (minimizing, if possible, the weight of the largest edge added).
Furthermore, we can require, without loss of generality, that Gq is a supergraph of Gq0

if q0 � q.

3. Compute all maximal cliques C1; C2; : : : ; Ct in Gw, and compute trees Ti = M (Ci); i = 1; 2; : : : ; t
(note t � n).

4. Combine trees T1; T2; : : : ; Tt into one tree, T
w.

� Phase II: Compute the consensus tree T of the trees Tw, and return T .

Several portions of the technique are exible and can be modi�ed to obtain improved performance for
di�erent phylogenetic methods. In particular: the triangulation of the threshold graph, the technique used
for combining subtrees, and the consensus tree technique, can each be modi�ed.

7.5.1 DCM-Naive Quartet

Some DCM-boosted methods can be proven to be fast converging. One such example is the DCM-Naive
Quartet method. For �xed q, construct and triangulate the threshold graph, minimizing the weight of the

heaviest edge added.

1. The base method is the Naive Quartet Method. If the Naive Quartet Method fails to return a tree on
any subproblem, then return fail.

2. Merge subtrees using the strict consensus merger (see Figure 1).

3. Having computed all Tq , select the most resolved tree (the tree with the most internal edges). If more
than one maximally resolved tree, then select the highest indiced such tree.

Theorem 11 DCM-Naive Quartet Method is a fast converging method.

8 Open Problems

We now describe some of the many open problems that remain, and where progress might reasonably be
made in the short term:
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Figure 1: Merging two trees together, by �rst transforming them (through a minimal set of edge contractions) so
that they induce the same subtrees on their shared leaves.

1. We have mathematical theory establishing upper bounds on the sequence lengths that su�ce for accu-
rate tree reconstruction with high probability, for a number of methods under a number of stochastic
models of sequence evolution. These bounds are, in some cases, quite loose, as experimental studies
indicate much faster convergence rates than are predicted by theory. Furthermore, we have very little
theory establishing the rate at which the errors decrease to 0 for many statistically consistent methods,
so that we cannot predict, mathematically, what the performance will be on sequence lengths that are
too short to guarantee 100% accuracy.

� Can we establish tighter bounds on the sequence lengths that su�ce for topological accuracy for
statistically consistent distance methods, under standard models of evolution? In particular, the
experimental performance of the neighbor-joining (NJ) method is dramatically better than that of
the naive quartet method, yet both have the same theoretical guarantees. Is NJ fast converging?

� Can we establish bounds on the degree of topological error obtained by various phylogenetic
methods, when the sequences are too short for 100% accuracy to be guaranteed?

� Are there other techniques for establishing fast convergence, or other techniques for bounding the
convergence rate, which could help us obtain better bounds on the convergence rates of important
phylogenetic methods? In particular, can we establish a technique for analyzing the convergence
rate of methods other than distance-based methods?

2. We have very little mathematical theory about maximumparsimony, except for the theory which indi-
cates the conditions under which maximumparsimony will be statistically inconsistent. Yet simulation
studies indicate that maximum parsimony often has very low error rates, by comparison to many sta-
tistically consistent methods, under realistic conditions. Can we establish any mathematical theory
about maximum parsimony?

3. The techniques used for establishing fast convergence suggest optimization problems based upon �tting
dissimilarity matrices to additive matrices, but considering only the entries below �xed constants q.
For example:

Given n� n dissimilarity matrix d, q � 0, �nd additive matrix D minimizing L(q)1 (d;D).

For q unbounded, this is equivalent to the NP-hard L1-nearest tree problem, but it is possible that
for q small, the problem may be polynomial. Even if the problems of this sort are NP-hard, it may be
possible to obtain good approximations of optimal solutions in polynomial time.
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